Bücher online kostenlos Kostenlos Online Lesen
Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Titel: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 Kostenlos Bücher Online Lesen
Autoren: Michio Kaku
Vom Netzwerk:
neurons, which generates faint electrical signals that can be measured by placing electrodes around a person’s head. By analyzing the electrical impulses picked up by these electrodes, one can record the brain waves. This is called an EEG (electroencephalogram), which can record gross changes in the brain, such as when it is sleeping, and also moods, such as agitation, anger, etc. The output of the EEG can be displayed on a computer screen, which the subject can watch. After a while, the person is able to move the cursor by thinking alone. Already, Niels Birbaumer of theUniversity of Tübingen has been able to train partially paralyzed people to type simple sentences via this method.
    Even toy makers are taking advantage of this. A number of toy companies, including NeuroSky, market a headband with an EEG-type electrode inside. If you concentrate in a certain way, you can activate the EEG in the headband, which then controls the toy. For example, you can raise a Ping-Pong ball inside a cylinder by sheer thought.
    The advantage of the EEG is that it can rapidly detect various frequencies emitted by the brain without elaborate, expensive equipment. But one large disadvantage is that the EEG cannot localize thoughts to specific locations of the brain.
    A much more sensitive method is the fMRI (functional magnetic resonance imaging) scan. EEG and fMRI scans differ in important ways. The EEG scan is a passive device that simply picks up electrical signals from the brain, so we cannot determine very well the location of the source. An fMRI machine uses “echoes” created by radio waves to peer inside living tissue. This allows us to pinpoint the location of the various signals, giving us spectacular 3-D images of inside the brain.
    The fMRI machine is quite expensive and requires a laboratory full of heavy equipment, but already it has given us breathtaking details of how the thinking brain functions. The fMRI scan allows scientists to locate the presence of oxygen contained within hemoglobin in the blood. Since oxygenated hemoglobin contains the energy that fuels cell activity, detecting the flow of this oxygen allows one to trace the flow of thoughts in the brain.
    Joshua Freedman, a psychiatrist at the University of California, Los Angeles, says: “ It’s like being an astronomer in the sixteenth century after the invention of the telescope. For millennia, very smart people tried to make sense of what was going on up in the heavens, but they could only speculate about what lay beyond unaided human vision. Then, suddenly, a new technology let them see directly what was there.”
    In fact, fMRI scans can even detect the motion of thoughts in the living brain to a resolution of .1 millimeter, or smaller than the head of a pin, which corresponds to perhaps a few thousand neurons. An fMRI can thus give three-dimensional pictures of the energy flow inside the thinking brain to astonishing accuracy. Eventually, fMRI machines may be built thatcan probe to the level of single neurons, in which case one might be able to pick out the neural patterns corresponding to specific thoughts.
    A breakthrough was made recently by Kendrick Kay and his colleagues at the University of California at Berkeley. They did an fMRI scan of people as they looked at pictures of a variety of objects, such as food, animals, people, and common things of various colors. Kay and colleagues created a software program that could associate these objects with the corresponding fMRI patterns. The more objects these subjects saw, the better the computer program was at identifying these objects on their fMRI scans.
    Then they showed the same subjects entirely new objects, and the software program was often able to correctly match the object with the fMRI scan. When shown 120 pictures of new objects, the software program correctly identified the fMRI scan with these objects 90 percent of the time. When the subjects were shown 1,000 new pictures, the software program’s success rate was 80 percent.
    Kay says it is “ possible to identify, from a large set of completely novel natural images , which specific image was seen by an observer. … It may soon be possible to reconstruct a picture of a person’s visual experience from measurements of brain activity alone.”
    The goal of this approach is to create a “dictionary of thought,” so that each object has a one-to-one correspondence to a certain fMRI image. By reading the fMRI pattern, one can then

Weitere Kostenlose Bücher