Starting Strength
of complex multi-joint movements; it trains the commitment involved in getting under the bar, the all-or-none that is sometimes lacking in a deadlift attempt; it trains the rate of motor unit recruitment, thus improving neuromuscular efficiency; and it teaches explosion – the mental cue for highly efficient motor unit recruitment. The deadlift develops the concentric and isometric strength involved in holding the correct position through the slower parts of a heavy clean, and the ability to hold the back rigid during the explosive hip extension that makes for an efficient second pull; it increases the total number of motor units that can be recruited in a contraction; it teaches and enables “grind” – the patience necessary to maintain position through a long effort; it disinhibits the nervous system against heavier weights, so that heavy cleans feel light in contrast to heavy deadlifts; and it develops the good old-fashioned ability to produce force.
A very strong powerlifter can deadlift two to three times the weight he can power clean – because he probably doesn’t train the clean at all. In the early days of powerlifting, most competitors had weightlifting experience or were coached by people who did. This being no longer the case, a powerlifter’s power clean might be 40% of his deadlift. In contrast, an Olympic weightlifter might clean 85% of his deadlift. This difference is a direct result of genetics and training specificity. At the elite levels, all sports favor a certain type of genetic predisposition. The elite powerlifter is an athlete who is good at pulling heavy weights, and the elite weightlifter is good at pulling moderate weights fast. And weightlifters tend to train with lighter weights explosively, while powerlifters concentrate their efforts on the slower movements that allow the use of heavier weights. It is quite likely that a weightlifter who can deadlift only 450 pounds over a 385-pound clean has not trained with sufficiently heavy weights to develop his absolute strength. His clean would go up if he developed his absolute strength off the floor. There is no reason that a lifter with a 385 clean and a 450 deadlift can’t get his deadlift stronger, unless he is happy with staying at a 385 clean. Or it could be that the powerlifter with a 600-pound deadlift and a 240-pound clean has neglected to develop his power off the floor. (“Powerlifting” is a bad choice of name for the sport; it should be “strengthlifting,” but I predict that my suggestion will not be adopted anytime soon.) Both sports could benefit from more exposure to each other’s training methods.
These examples illustrate a way to consider the relationship of absolute strength to power: you can think of the power clean as being done with a percentage of the deadlift. In other words, explosive strength is displayed as a percentage of absolute strength . The ratio between the two depends on training and genetics, and the vertical jump might be the indicator of the ratio. Training can improve the ratio to a certain extent, but genetics will limit this extent. What is certain is that as the ability to produce force increases, the potential to display that force as power goes up with it. The extent to which this is true at the extreme limits of performance is unclear, but for novice lifters, there is no question that the best way to make the clean stronger is to make the deadlift stronger.
If this is true, why train the power clean at all? For some people, this is a legitimate question. Older people with old-people’s elbows, shoulders, and wrists may elect not to perform the exercise at all, as may very young trainees, people with poor athletic ability, older women, or people with osteoporosis, chronic knee tendinitis, or other problems that make the power clean more trouble than it is productive. But for most other people and all athletes, the power clean is the best way to increase the ability to explode – to display power – where this ability needs to be developed.
The Neuromuscular System
To understand the nature of power production by the human body, you need to understand the way the nervous system controls the muscles. A detailed discussion of the physiology of muscle contraction is outside the scope of this discussion, and can be found in Practical Programming for Strength Training, Second Edition (Aasgaard, 2009) and in many other sources. Very short version: The muscles are composed of
Weitere Kostenlose Bücher