Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
tinier craters. Craters inside craters inside craters, something I had never seen before. I immediately realized that without an atmosphere, even the tiniest microscopic piece of dirt, hitting you at 40,000 miles per hour, could easily kill you or at least penetrate your space suit. (Scientists understand the enormous damage created by these micrometeorites because they can simulate these impacts, and they have created huge gun barrels in their labs that can fire metal pellets to study these meteor impacts.)
One possible solution is to build an underground lunar base. Because of the moon’s ancient volcanic activity, there is a chance our astronauts can find a lava tube that extends deep into the moon’s interior. (Lava tubes are created by ancient lava flows that have carved out cavelike structures and tunnels underground.) In 2009, astronomers found a lava tube about the size of a skyscraper that might serve as a permanent base on the moon.
This natural cave could provide cheap protection for our astronauts against radiation from cosmic rays and solar flares. Even taking a transcontinental flight from New York to Los Angeles exposes us to a millirem of radiation per hour (equivalent to getting a dental X-ray). For our astronauts on the moon, the radiation might be so intense that they might need to live in underground bases. Without an atmosphere, a deadly rain of solar flares and cosmic rays would pose an immediate risk to astronauts, causing premature aging and even cancer.
Weightlessness is also a problem, especially for long missions in space. I had a chance to visit the NASA training center in Cleveland, Ohio, where extensive tests are done on our astronauts. In one test I observed, the subject was suspended in a harness so that his body was parallel to the ground. Then he began to run on a treadmill, whose tracks were vertical. By running on this treadmill, NASA scientists could simulate weightlessness while testing the endurance of the subject.
When I spoke to the NASA doctors, I learned that weightlessness was more damaging than I had previously thought. One doctor explained to me that after several decades of subjecting American and Russian astronauts to prolonged weightlessness, scientists now realize that the body undergoes significant changes: degradation occurs in the muscles, bones, and cardiovascular system. Our bodies evolved over millions of years while living in the earth’s gravitational field. When placed in a weaker gravitationalfield for long periods of time, all our biological processes are thrown into disarray.
Russian astronauts who have spent about a year in space are so weak when they come back to earth that they can barely crawl. Even if they exercise daily in space, their muscles atrophy, their bones lose calcium, and their cardiovascular systems begin to weaken. Some of the astronauts take months to recover from this damage, some of which may be permanent. A trip to Mars, which might take two years, may drain the strength of our astronauts so they cannot perform their mission when they arrive. (One solution to this problem is to spin the spacecraft, which creates artificial gravity inside the ship. This is the same reason that you can spin a pail of water over your head without the water spilling out. But this is prohibitively expensive because of the heavy machinery necessary to spin the craft. Every pound of extra weight adds $10,000 to the cost of the mission.)
WATER ON THE MOON
One game changer has been the discovery of ancient ice on the moon, probably left over from ancient comet impacts. In 2009, NASA’s lunar crater observation and sensing satellite (LCROSS) probe and its Centaur booster rocket slammed into the moon’s south polar region. They hit the moon at 5,600 miles per hour, creating a plume almost a mile high, and a crater about 60 feet across. Although TV audiences were disappointed that the LCROSS impact did not create a spectacular explosion as predicted, it yielded a wealth of scientific data. About 24 gallons of water were found in that plume. Then, in 2010, scientists made the shocking announcement that 5 percent of the debris contained water, so the moon was actually wetter than parts of the Sahara desert.
This could be significant, because it might mean that future astronauts can harvest underground ice deposits for rocket fuel (by extracting the hydrogen in the water), for breathing (by extracting the oxygen), for shielding (since water can absorb
Weitere Kostenlose Bücher