Self Comes to Mind
a critical part of the decision is left in the hands of the interneuron INT.
A major aspect of brain evolution has consisted of adding the equivalent of interneurons at every level of brain circuitry—a slew of such equivalents, in fact. The largest such equivalents, located in the cerebral cortex, might well be called interregions . They become sandwiched between other regions, for the good and obvious purpose of modulating simple responses to varied stimuli and making the responses less simple, less automatic.
On the path to making the modulation more subtle and sophisticated, the brain developed systems that map stimuli in such detail that the ultimate consequence was images and mind. Eventually the brain added a self process to those minds, and that permitted the creation of novel responses. Finally, in humans, when such conscious minds were organized in collectives of like beings, the creation of cultures became possible along with their attending external artifacts. In turn, cultures have influenced the operation of brains over generations and eventually influenced the evolution of the human brain.
The brain is a system of systems. Each system is composed of an elaborate interconnection of small but macroscopic cortical regions and subcortical nuclei, which are made of microscopic local circuits, which are made of neurons, all of which are connected by synapses.
What neurons do depends on the local assembly of neurons to which they belong; what systems end up doing depends on how local assemblies influence other assemblies within an interconnected architecture; finally, whatever each assembly contributes to the function of the system to which it belongs depends on its place in that system.
A NOTE ON THE MIND-BRAIN EQUIVALENCE HYPOTHESIS
The perspective adopted in this book contains a hypothesis that is not universally liked, let alone accepted—namely, the idea that mental states and brain states are essentially equivalent. The reasons for the reluctance in endorsing such a hypothesis deserve a hearing.
In the physical world, of which the brain is unequivocally a part, equivalence and identity are defined by physical attributes such as mass, dimensions, movement, charge, and so forth. Those who reject the identity between physical states and mental states suggest that while a brain map that corresponds to a particular physical object can be discussed in physical terms, it would be absurd to discuss the respective mental pattern in physical terms. The reason given is that to date science has not been able to determine the physical attributes of mental patterns, and if science cannot do so, then the mental cannot be identified with the physical. I fear, however, that this reasoning may not be sound. Let me explain why I think so.
First, we need to consider how we determine that nonmental states are physical. In the case of objects out in the world, we proceed by perceiving them with our peripheral sensory probes and by using varied instruments to execute measurements. In the case of mental events, however, we cannot do the same. This is not because mental events are not equivalent to neural states but because, given their place of occurrence—the interior of the brain—mental states are simply not available for measurement. In fact, mental events can be perceived only by part of the very same process that includes them—the mind, that is. The situation is unfortunate but says nothing whatsoever about the physicality of the mind or lack thereof. The situation does impose major qualifications on the intuitions that can emerge from it, however, and it is thus prudent to doubt the traditional view that asserts that mental states cannot be equivalent to physical states. It is unreasonable to endorse such a view purely on the basis of introspective observations. The personal perspective should be used and enjoyed for what it gives us directly: experience that can be made conscious, and that can help guide our life, provided extensive reflective analysis conducted offline—which includes scientific scrutiny—validates its counsel.
The fact that neural maps and the corresponding images are found inside the brain, accessible only to the brain’s owner, is a hurdle. But where else would the maps/images be found but within a private, secluded sector of the brain, given that they are formed inside the brain to begin with? What would be surprising would be to find them outside the brain, given that brain
Weitere Kostenlose Bücher