Self Comes to Mind
and behaviors are signs that the ironclad rules of life regulation are being disobeyed; they are prompts from the netherlands of nonconscious processing toward minded and conscious life, requesting us to find a reasonable solution for a situation that can no longer be managed by automatic, nonconscious devices.
When one measures each of those parameters and attributes numbers to them, one discovers that the range within which they normally vary is extremely small. In other words, life requires that the body maintain a collection of parameter ranges at all costs for literally dozens of components in its dynamic interior. All the management operations to which I alluded earlier—procuring energy sources, incorporating and transforming energy products, and so forth—aim at maintaining the chemical parameters of a body’s interior (its internal milieu) within the magic range compatible with life. The magic range is known as homeostatic , and the process of achieving this balanced state is called homeostasis . These not-so-elegant words were coined in the twentieth century by the physiologist Walter Cannon. Cannon expanded on the discoveries of the nineteenth-century French biologist Claude Bernard, who had coined the nicer term milieu intérieur (internal milieu), the chemical soup within which the struggle for life goes on uninterrupted but hidden from view. Unfortunately, although the essentials of life regulation (the process of homeostasis) have been known for more than a century and are applied daily in general biology and medicine, their deeper significance in terms of neurobiology and psychology has not been appreciated. 6
The Origins of Homeostasis
How was homeostasis ever planted in whole organisms? How did single cells acquire their life-regulation design? To approach such a question, one must engage in a problematic form of reverse engineering that is never easy because we have spent most of our scientific history thinking from the perspective of whole organisms rather than from the perspective of the molecules and genes with which organisms began.
The fact that homeostasis began unknowingly, at the level of organisms without consciousness, mind, or brain, raises the question of where and how the homeostatic intention was planted in the history of life. That question takes us down from single cells to genes and from there to simple molecules, simpler even than DNA and RNA. The homeostatic intention may arise from those simple levels and may even be related to the basic physical processes that govern the interaction of molecules—for example, the forces with which two molecules attract or reject each other, or combine constructively or destructively. Molecules repulse or attract; they assemble and participate explosively, or they refuse to do so.
As far as organisms are concerned, gene networks resulting from natural selection were evidently responsible for endowing them with homeostatic capability. What kind of knowledge did (and do) gene networks possess in order to be able to pass on such wise instructions to the organisms they launched? Where is the origin of value—its “primitive”—when we go below the level of tissues and cells to the level of genes? Perhaps what is needed is a specific ordering of genetic information. At the level of gene networks the primitive of value would consist of an ordering of gene expression that would result in the construction of “homeostatically competent” organisms.
But deeper answers must be sought at even simpler levels. There are important debates regarding how the process of natural selection has operated to produce the human brains we currently enjoy. Has natural selection operated at the level of genes, or whole organisms, or groups of individuals, or all of the above? But from the gene perspective, and in order for genes to survive over generations, gene networks had to construct perishable and yet successful organisms that served as vehicles. And in order for organisms to behave in such a successful manner, genes must have guided their assembly with some critical instructions.
A good part of those instructions must have consisted of constructing devices capable of conducting efficient life regulation. The newly assembled devices handled the distribution of rewards, the application of punishments, and the prediction of situations that an organism would face. In brief, gene instructions led to the construction of devices capable of executing
Weitere Kostenlose Bücher