Self Comes to Mind
what, in complex organisms like us, came to flourish as emotions, in the broad sense of the term. The early sketch of these devices was first present in organisms without brain, mind, or consciousness—the single cells we discussed earlier; however, the regulating devices attained the greatest complexity in organisms that have all three: brain, mind, and consciousness. 7
Is homeostasis enough to guarantee survival? Not really, because attempting to correct homeostatic imbalances after they begin is inefficient and risky. Evolution took care of this problem by introducing devices that allow organisms to anticipate imbalances and that motivate them to explore environments likely to offer solutions.
Cells, Multicellular Organisms, and Engineered Machines
Cells and multicellular organisms share several features with engineered machines. The activity of either living organisms or engineered machines achieves a goal; there are component processes to the activity; the processes are executed by distinct anatomical parts that perform subtasks; and so forth. The resemblance is quite suggestive and is behind the two-way metaphors with which we describe both living things and machines. We talk of the heart as a pump, we describe blood circulation as plumbing, we refer to the action of limbs as levers, and so forth. Likewise, when we consider an indispensable operation in a complex machine, we call it the “heart” of the machine, and we refer to the control devices of the same machine as its “brain.” Machines that operate unpredictably are called “temperamental.” This mode of thinking, which by and large is quite illuminating, is also responsible for the less-than-helpful idea that the brain is a digital computer and the mind something like the software that one may run in it. But the real problem of these metaphors comes from their neglect of the fundamentally different statuses of the material components of living organisms and engineered machines. Compare a modern marvel of aircraft design—the Boeing 777—with any example of living organism, small or large. A number of similarities can easily be identified—command centers in the form of cockpit computers; feedforward information channels to those computers, regulating feedback channels to the peripheries; a metabolism of sorts present in the fact that engines feed on fuel and transform energy; and so forth. And yet a fundamental difference persists: any living organism is naturally equipped with global homeostatic rules and devices; in case they malfunction, the living organism’s body perishes; even more important, every component of the living organism’s body (by which I mean every cell) is, in itself, a living organism, naturally equipped with its own homeostatic rules and devices, subject to the same risk of perishability in case of malfunction. The structure of the admirable 777 has nothing comparable whatsoever, from its metal-alloy fuselage to the materials that make up its miles of wiring and hydraulic tubing. The high-level “homeostatics” of the 777, shared by its bank of intelligent on-board computers and the two pilots needed to fly the aircraft, aim at preserving its entire, one-piece structure, not its micro and macro physical subcomponents.
Biological Value
As I see it, the most essential possession of any living being, at any time, is the balanced range of body chemistries compatible with healthy life. It applies equally to an amoeba and to a human being. All else flows from it. Its significance cannot be overemphasized.
The notion of biological value is ubiquitous in modern thinking about brain and mind. We all have an idea, or perhaps several ideas, of what the word value means, but what about biological value? Let us consider some other questions: Why do we take virtually everything that surrounds us—food, houses, gold, jewelry, paintings, stocks, services, even other people—and assign a value to it? Why does everyone spend so much time calculating gains and losses related to those items? Why do items carry a price tag? Why this incessant valuation? And what are the yardsticks against which value is measured? At first glance these questions might seem to have no place in a conversation about brain, mind, and consciousness. But in fact they do, and, as we shall see, the notion of value is central to our understanding of brain evolution, brain development, and actual, moment-to-moment brain activity.
Of the questions
Weitere Kostenlose Bücher