Self Comes to Mind
posed above, only the question of why items carry a price tag has a fairly straightforward answer. Indispensable items and items that are hard to obtain, given the high demand for them or their relative rarity, carry a higher cost. But why do they need a price? Well, there is not possibly enough of everything for everyone to have some; pricing is a means to govern the very real mismatch between what is available and the demand for it. Pricing introduces restraint and creates some sort of order in the access to items. But why is there not enough of everything for everyone? One reason has to do with the uneven distribution of needs. Certain items are very much needed, others less so, some not at all. Only when we introduce the notion of need do we come, finally, to the crux of biological value: the matter of a living individual struggling to maintain life and the imperative needs that arise in the struggle. Why we assign value in the first place, however, or the choice of yardstick we use in the assignment, requires an acknowledgment of the problem of maintaining life and of its requisite needs. As far as humans are concerned, maintaining life is only part of a larger problem, but let us stay with survival to begin with.
To date, neuroscience has dealt with this set of questions by taking a curious shortcut. It has identified several chemical molecules that are related, in one way or another, to states of reward or punishment and thus, by extension, are associated with value. Some of the best-known molecules will sound familiar to many readers: dopamine, norepinephrine, serotonin, cortisol, oxytocin, vasopressin. Neuroscience has also identified a number of brain nuclei that manufacture such molecules and deliver them to other parts of the brain and the body. (Brain nuclei are collections of neurons located below the cerebral cortex in the brain stem, hypothalamus, and basal forebrain; they should not be confused with the nuclei inside eukaryotic cells, which are simple sacs where most of the cell’s DNA is housed.) 8
The complicated neural mechanics of “value” molecules is an important topic that many committed neuroscience researchers are attempting to unravel. What prompts the nuclei to release those molecules? Where in the brain and body are they released precisely? What does their release accomplish? Somehow discussions about the fascinating new facts come up short when one turns to the central question: Where is the engine for the value systems? What is the biological primitive of value? In other words, where is the impetus for this byzantine machinery? Why did it even begin? Why did it turn out to be this way?
Without a doubt, the popular molecules and their nuclei of origin are important parts of the machinery of value. But they are not the answer to the questions posed above. I see value as indelibly tied to need, and need as tied to life. The valuations we establish in everyday social and cultural activities have a direct or indirect connection with homeostasis. That connection explains why human brain circuitry has been so extravagantly dedicated to the prediction and detection of gains and losses, not to mention the promotion of gains and the fear of losses. It explains, in other words, the human obsession with assignation of value.
Value relates directly or indirectly to survival. In the case of humans in particular, value also relates to the quality of that survival in the form of well-being . The notion of survival—and, by extension, the notion of biological value—can be applied to varied biological entities, from molecules and genes to whole organisms. I shall consider the whole organism perspective first.
Biological Value in Whole Organisms
Crudely stated, the paramount value for whole organisms consists of healthy survival to an age compatible with reproductive success. Natural selection has perfected the machinery of homeostasis to permit precisely that. Accordingly, the physiological state of a living organism’s tissues, within an optimal homeostatic range, is the deepest origin of biological value and valuations. The statement applies equally to multicellular organisms and to those whose living “tissue” is confined to one cell.
The ideal homeostatic range is not absolute—it varies according to the context in which an organism is placed. But toward the extremes of the homeostatic range, the viability of living tissue declines and the risk of disease and death increases;
Weitere Kostenlose Bücher