Understanding Quantum Physics: An Advanced Guide for the Perplexed
Harrison, R.,
Moroz, I. and Tod, K. P. (2003). A numerical study of the Schrödinger-Newton equations.
Nonlinearity 16, 101-122.
[83] Holland, P.
(1993). The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal
Interpretation of Quantum Mechanics. Cambridge: Cambridge University Press.
[84] Holman M.
(2006) On arguments for linear quantum dynamics. quant-ph/0612209.
[85] Hosten, O.
and Kwiat, P. G. (2008). Observation of the Spin Hall Effect of Light via Weak
Measurements. Science 319, 787-790.
[86] Hughston, L.
P. (1996). Geometry of stochastic state vector reduction. Proc. Roy. Soc. A
452, 953.
[87] Janis, A.
(2010). Conventionality of simultaneity, The Stanford Encyclopedia of
Philosophy (Fall 2010 Edition), Edward N. Zalta (eds.), URL =
http://plato.stanford.edu/archives/fall2010/entries/spacetimeconvensimul/.
[88] Joos, E. and
Zeh, H. D. (1985). The emergence of classical properties through interaction
with the environment. Zeitschrift fr Physik B 59, 223-243.
[89] Kochen, S.
and Specker, E. (1967). The Problem of Hidden Variables in Quantum Mechanics,
J. Math. Mech. 17, 59-87.
[90] Lewis, P.
(2004). Life in configuration space, British Journal for the Philosophy of
Science 55, 713-729.
[91] Marshall, W.,
Simon, C., Penrose, R., and Bouwmeester, D. (2003). Towards quantum
superpositions of a mirror, Phys. Rev. Lett. 91, 130401.
[92] Maudlin, T.
(2002). Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern
Physics. Oxford: Blackwell.
[93] Miller, D. J.
(2011). State-dependent rotations of spins by weak measurements, Phys. Rev. A
83, 032121. [94] Monton, B. (2002). Wave function ontology. Synthese 130,
265-277.
[95] Monton, B.
(2006). Quantum mechanics and 3NB. (2006). Quantum mechanics and 3N 789.
[96] Moore, W. J.
(1994). Schrödinger: Life and Thought. Cambridge: Cambridge University Press.
[97] Moroz, I. M.,
Penrose, R. and Tod, P. (1998). Spherically-symmetric solutions of the
SchrödingerNewton equations. Class. Quant. Grav. 15, 2733.
[98] Moroz, I. M.
and Tod, K. P. (1999). An analytical approach to the Schrödinger-Newton
equations. Nonlinearity 12, 201-16.
[99] Mott, N. F.
(1929). The Wave Mechanics of α-ray Tracks, Proceedings of the Royal Society of
London A 126, 79-84.
[100] Nakamura, K.
et al (Particle Data Group) (2010). J. Phys. G: Nucl. Part. Phys. 37, 075021.
[101] Nelson, E.
(1966). Derivation of the Schrödinger equation from Newtonian mechanics. Phys.
Rev. 150, 1079-1085.
[102] Nelson, E. (2005). The mystery of stochastic mechanics, manuscript
2005-11-22.
[103] Okun, L. B.
(2009). Energy and Mass in Relativity Theory. New Jersey: World Scientific.
[104] Pearle, P.
(1989). Combining stochastic dynamical state-vector reduction with spontaneous
localization. Phys. Rev. A 39, 2277.
[105] Pearle, P.
(1999). Collapse models. In: Petruccione, F. and Breuer, H. P. (eds.), Open
Systems and Measurement in Relativistic Quantum Theory. Springer Verlag, New
York.
[106] Pearle, P.
(2000). Wavefunction Collapse and Conservation Laws. Found. Phys. 30,
1145-1160.
[107] Pearle, P.
(2004). Problems and aspects of energy-driven wavefunction collapse models.
Phys. Rev. A 69, 42106.
[108] Pearle, P.
(2007). How stands collapse I. J. Phys. A: Math. Theor., 40, 3189-3204.
[109] Pearle, P.
(2009). How stands collapse II. in Myrvold, W. C. and Christian, J. eds.,
Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle:
Essays in Honour of Abner Shimony. The University of Western Ontario Series in
Philosophy of Science, 73(IV), 257-292.
[110] Pearle, P.
and Squires, E. (1996). Gravity, energy conservation and parameter values in
collapse models. Found. Phys. 26, 291.
[111] Penrose, R.
(1996). On gravity's role in quantum state reduction. Gen. Rel. Grav. 28, 581.
[112] Penrose, R.
(1998). Quantum computation, entanglement and state reduction. Phil. Trans. R.
Soc. Lond. A 356, 1927.
[113] Penrose, R.
(2004). The Road to Reality: A Complete Guide to the Laws of the Universe.
London: Jonathan Cape.
[114] Percival, I.
C. (1995). Quantum space-time fluctuations and primary state diffusion. Proc.
Roy. Soc. A 451, 503.
[115] Percival, I.
C. (1998a). Quantum State Diffusion. Cambridge: Cambridge University Press.
[116] Percival, I.
C. (1998b). Quantum transfer function,
[116] Percival, I.
C. (1998b). Quantum transfer function, 501.
[117] Reichenbach,
H. (1958). The Philosophy of Space and Time, New York: Dover.
[118] Rosenfeld, L. (1963). On
Weitere Kostenlose Bücher