Bücher online kostenlos Kostenlos Online Lesen
Understanding Quantum Physics: An Advanced Guide for the Perplexed

Understanding Quantum Physics: An Advanced Guide for the Perplexed

Titel: Understanding Quantum Physics: An Advanced Guide for the Perplexed Kostenlos Bücher Online Lesen
Autoren: Shan Gao
Vom Netzwerk:
arbitrary experimental frame with
velocity v relative to the frame S 0 :

    This formula
contains a term relating to the velocity of the experimental frame relative to
the preferred Lorentz frame. It can be expected that this velocity-dependent
term originates from the relativistic equation of collapse dynamics. Indeed,
the equation of collapse dynamics, which nonrelativistic form is denoted by Eq.
(4.15), does contain a velocity term in order to be relativistic invariant [111] :

    where f(v) ≈ 1 +
v/c when E ≈ pc, and v is the velocity of the experimental frame relative to
the preferred Lorentz frame. From this equation we can also derive the above
relativistic collapse time formula.
    Therefore,
according to our energy-conserved collapse model, the collapse time of a given
wave function will differ in different inertial frames [112] . For example, when considering the maximum
difference of the revolution speed of the Earth with respect to the Sun is ∆v ≈
60km/s, the maximum difference of the collapse time measured in different times
(e.g. spring and fall respectively) on the Earth will be ∆τ c ≈ 4 × 10 −4 τ c .
As a result, the collapse dynamics will single out a preferred Lorentz frame in
which the collapse time of a given wave function is longest, and the frame can
also be determined by comparing the collapse time of a given wave function in
different frames. It may be expected that this preferred Lorentz frame is the
CMB-frame in which the cosmic background radiation is isotropic, and the
one-way speed of light is also isotropic in this frame [113] .

Bibliography
    [1] Adler, S. L.
(2002). Environmental influence on the measurement process in stochastic
reduction models, J. Phys. A: Math. Gen. 35, 841-858.
    [2] Adler, S. L.
(2007). Comments on proposed gravitational modifications of Schrödinger
dynamics and their experimental implications. J. Phys. A: Math. Gen. 40,
755-764.
    [3] Aharonov, Y.,
Albert, D. Z. and Vaidman, L. (1988). How the result of a measurement of a
component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev.
Lett. 60, 1351.
    [4] Aharonov, Y.,
Anandan, J. and Vaidman, L. (1993). Meaning of the wave function, Phys. Rev. A
47, 4616.
    [5] Aharonov, Y.,
Anandan, J. and Vaidman, L. (1996). The meaning of protective measurements,
Found. Phys. 26, 117.
    [6] Aharonov, Y.,
Englert, B. G. and Scully M. O. (1999). Protective measurements and Bohm
trajectories, Phys. Lett. A 263, 137.
    [7] Aharonov, Y.,
Erez, N. and Scully M. O. (2004). Time and Ensemble Averages in Bohmian
Mechanics. Physica Scripta 69, 81-83.
    [8] Aharonov, Y.
and Vaidman, L. (1993). Measurement of the Schrödinger wave of a single
particle, Phys. Lett. A 178, 38.
    [9] Aharonov, Y.
and Vaidman, L. (1996). About position measurements which do not show the
Bohmian particle position, in J. T. Cushing, A. Fine, and S. Goldstein (eds.),
Bohmian Mechanics and Quantum Theory: An Appraisal, Dordrecht: Kluwer Academic,
141-154.
    [10] Albert, D.
(1992). Quantum Mechanics and Experience. Cambridge, MA: Harvard University
Press.
    [11] Albert, D.
(1996). Elementary Quantum Metaphysics, in J. T. Cushing, A. Fine, and S.
Goldstein (eds.), Bohmian Mechanics and Quantum Theory: An Appraisal,
Dordrecht: Kluwer Academic, 277-284.
    [12] Albert, D. Z.
and Loewer, B. (1988). Interpreting the Many Worlds Interpretation, Synthese,
77, 195-213.
    [13] Allori, V.,
Goldstein, S., Tumulka, R., and Zanghi, N. (2008), On the Common Structure of
Bohmian Mechanics and the Ghirardi-Rimini-Weber Theory, British Journal for the
Philosophy of Science 59 (3), 353-389.
    [14] Anandan, J.
(1993). Protective Measurement and Quantum Reality. Found. Phys. Lett., 6,
503-532.
    [15]
Bacciagaluppi, G. (2008). The role of decoherence in quantum mechanics. The
Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta
(eds.), http://plato.stanford.edu/archives/fall2008/entries/qmdecoherence/.
    [16] Barrett, J.,
Leifer, M. and Tumulka, R. (2005). Bells jump process in discrete time. Europhys.
Lett. 72, 685. [17] Barrett, J. A. (1999). The Quantum Mechanics of Minds and
Worlds. Oxford: Oxford University Press.
    [18] Bassi, A.,
Ippoliti, E., and Vacchini, B. (2005). On the energy increase in space-collapse
models. J. Phys. A : Math. Gen. 38, 8017.
    [19] Bassi, A.
(2007). Dynamical reduction models: present status and future developments. J.
Phys.: Conf. Series 67, 012013.
    [20] Bedingham, D.
J. (2011). Relativistic state reduction dynamics.

Weitere Kostenlose Bücher