Bücher online kostenlos Kostenlos Online Lesen
Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Titel: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 Kostenlos Bücher Online Lesen
Autoren: Michio Kaku
Vom Netzwerk:
ways. Although the process is slow, there are so many trillions of DNA molecules acting simultaneously that a DNA computer can solve certain calculations more conveniently than a digital computer. Although a digital computer is quite convenient and can be placed inside your cell phone, DNA computers are more awkward, involving mixing tubes of liquid containing DNA.

MIDCENTURY (2030 TO 2070)
    SHAPE-SHIFTING
    In the movie
Terminator 2: Judgment Day,
Arnold Schwarzenegger is attacked by an advanced robot from the future, a T-1000, which is made of liquid metal. Resembling a quivering mass of mercury, it can change shape and slither its way through any obstacle. It can seep through the tiniest cracks and fashion deadly weapons by reshaping its hands and feet. And then it can suddenly re-form into its original shape to carry on its murderousrampage. The T-1000 appeared to be unstoppable, the perfect killing machine.
    All this was science fiction, of course. The technology of today does not allow you to change a solid object at will. Yet by midcentury a form of this shape-shifting technology may become commonplace. In fact, one of the main companies driving this technology is Intel.
    Ironically, by 2050, most of the fruits of nanotechnology will be everywhere, but hidden from view. Almost every product will be enhanced via molecular manufacturing techniques, so they will become superstrong, resistant, conductive, and flexible. Nanotechnology will also give us sensors that constantly protect and help us, distributed in the environment, hidden away, beneath the surface of our consciousness. We will walk down the street and everything will appear to be the same, so we will never know how nanotechnology has changed the world around us.
    But there is one consequence of nanotechnology that will be obvious.
    The
Terminator
T-1000 killer robot is perhaps the most dramatic example of an object from the field called programmable matter, which may allow us one day to change the shape, color, and physical form of an object with the push of a button. On a primitive level, even a neon sign is a form of programmable matter, since you can flick a light switch and send electricity through a tube of gas. The electricity excites the gas atoms, which then decay back to their normal state, releasing light in the process. A more sophisticated version of this is the LCD display found on computer screens everywhere. The LCD contains a liquid crystal that becomes opaque when a small electrical current is applied. Thus, by regulating the electrical current flowing inside a liquid crystal, one can create colors and shapes on a screen with the push of a button.
    The scientists at Intel are much more ambitious. They visualize using programmable matter to actually change the shape of a solid object, just like in science fiction. The idea is simple: create a computer chip in the shape of a tiny grain of sand. These smart grains of sand allow you to change the static electric charge on the surface, so that these grains can attract and repel each other. With one set of charges, these grains can line up to form a certain array. But you can reprogram these grains so that their electrical charges change. Instantly, these grains rearrange themselves, forming an entirely different arrangement. These grains are called “catoms” (short forclaytronic atoms) since they can form a wide range of objects by simply changing their charges, much like atoms. (Programmable matter has much in common with the modular robots we saw in Chapter 2 . While the modular robots contain smart blocks, about 2 inches in size, that can rearrange themselves, programmable matter shrinks these building blocks to submillimeter size and beyond.)
    One of the promoters of this technology is Jason Campbell, a senior researcher at Intel. He says, “ Think of a mobile device. My cell phone is too big to fit comfortably in my pocket and too small for my fingers. It’s worse if I try to watch movies or do my e-mail. But if I had 200 to 300 milliliters of catoms, I could have it take on the shape of the device that I need at that moment.” So one moment, I have a cell phone in my hand. The next moment, it morphs into something else. This way, I don’t have to carry so many electronic gadgets.
    In its laboratories, Intel has already created an array of catoms that are about an inch in size. The catom resembles a cube with scores of tiny electrodes spread evenly on its surfaces. What makes

Weitere Kostenlose Bücher