Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
exist. Several corporations have announced that they have created transistors made of individual molecules. But before they can be commercially viable, one must be able to wire them up correctly and mass-produce them.
One promising candidate for the molecular transistor comes from a substance called graphene, which was first isolated from graphite in 2004 by Andre Geim and Kostya Novoselov of the University of Manchester, who won a Nobel Prize for their work. It is like a single layer of graphite. Unlike carbon nanotubes, which are sheets of carbon atoms rolled up intolong, narrow tubes, graphene is a single sheet of carbon, no more than one atom thick. Like carbon nanotubes, graphene represents a new state of matter, so scientists are teasing apart its remarkable properties, including conducting electricity. “ From the point of view of physics, graphene is a goldmine. You can study it for ages,” remarks Novoselov. (Graphene is also the strongest material ever tested in science. If you placed an elephant on a pencil, and balanced the pencil on a sheet of graphene, the graphene would not tear.)
Novoselov’s group has employed standard techniques used in the computer industry to carve out some of the smallest transistors ever made. Narrow beams of electrons can carve out channels in graphene, making the world’s smallest transistor: one atom thick and ten atoms across. (At present, the smallest molecular transistors are about 30 nanometers in size. Novoselov’s smallest transistors are thirty times smaller than that.)
These transistors of graphene are so small, in fact, they may represent the ultimate limit for molecular transistors. Any smaller, and the uncertainty principle takes over and electrons leak out of the transistor, destroying its properties. “ It’s about the smallest you can get,” says Novoselov.
Although there are several promising candidates for molecular transistors, the real problem is more mundane: how to wire them up and assemble them into a commercially viable product. Creating a single molecular transistor is not enough. Molecular transistors are notoriously hard to manipulate, since they can be thousands of times thinner than a human hair. It is a nightmare thinking of ways to mass-produce them. At present, the technology is not yet in place.
For example, graphene is such a new material that scientists do not know how to produce large quantities of it. Scientists can produce only about .1 millimeter of pure graphene, much too small for commercial use. One hope is that a process can be found that self-assembles the molecular transistor. In nature, we sometimes find arrays of molecules that condense into a precise pattern, as if by magic. So far, no one has been able to reliably re-create this magic.
QUANTUM COMPUTERS
The most ambitious proposal is to use quantum computers, which actually compute on individual atoms themselves. Some claim that quantumcomputers are the ultimate computer, since the atom is the smallest unit that one can calculate on.
An atom is like a spinning top. Normally, you can store digital information on spinning tops by assigning the number “0” if the top is spinning upward, or “1” if the top is spinning down. If you flip over a spinning top, then you have converted a 0 into a 1 and have done a calculation.
But in the bizarre world of the quantum, an atom is in some sense spinning up and down simultaneously. (In the quantum world, being several places at the same time is commonplace.) An atom can therefore contain much more information than a 0 or a 1. It can describe a mixture of 0 and 1. So quantum computers use “qubits” rather than bits. For example, it can be 25 percent spinning up and 75 percent spinning down. In this way, a spinning atom can store vastly more information than a single bit.
Quantum computers are so powerful that the CIA has looked into their code-breaking potentials. When the CIA tries to break the code of another nation, it searches for the key. Nations have devised ingenious ways of constructing the key that encodes their messages. For example, the key may be based on factorizing a large number. It’s easy to factorize the number 21 as the product of 3 and 7. Now let’s say that you have an integer of 100 digits, and you ask a digital computer to rewrite it as the product of two other integers. It might take a digital computer a century to be able to factorize this number. A quantum computer, however, is so powerful
Weitere Kostenlose Bücher