Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
together by electrical forces, and he asked me to try to rip them apart by hand. Surprisingly, I couldn’t. I found that the electrical forces binding these two cubes were quite powerful. Then he pointed out that these electrical forces would be correspondingly greater if you miniaturized the cubes. He took me to another lab, where he showed me just how small these catoms can become. By employing the same techniques used to carve out millions of transistors on silicon wafers, he could carve out microscopic catoms that were only millimeters across. In fact, they were so small that I had to look at them under a microscope to see them clearly. He hopes that eventually, by controlling their electrical forces, he can get them to arrange in any shape with a push of a button, almost like a sorcerer conjuring up anything he wants.
Then I asked him, How can you give detailed instructions to billions upon billions of catoms, so that a refrigerator, say, might suddenly transform into an oven? It seems like a programming nightmare, I said. But he replied that it wasn’t necessary to give detailed instructions to every single catom. Each catom has to know only which neighbors it must attach to. If each catom is instructed to bind with only a tiny set of neighboring catoms, then the catoms would magically rearrange themselves into complex structures (much like the neurons of a baby’s brain need to know only how to attach themselves to neighboring neurons as the brain develops).
Assuming that the problem of programming and stability can be solved, then by late century there is the possibility that entire buildings or even cities may rise at the push of a button. One need only lay out the location of the buildings, dig their foundations, and allow trillions of catoms to create entire cities rising from the desert or forest.
However, these Intel engineers envision the day when the catoms mayeven take human form. “ Why not? It’s an interesting thing to speculate on,” says Rattner. (Then perhaps the T-1000 robot may become a reality.)
FAR FUTURE (2070 TO 2100)
HOLY GRAIL: THE REPLICATOR
By 2100, advocates of nanotechnology envision an even more powerful machine: a molecular assembler, or “replicator,” capable of creating anything. It would consist of a machine perhaps the size of a washing machine. You would put the basic raw materials into the machine and then push a button. Trillions upon trillions of nanobots would then converge on the raw materials, each one programmed to take them apart molecule by molecule and then reassemble them into an entirely new product. This machine would be able to manufacture anything. The replicator would be the crowning achievement of engineering and science, the ultimate culmination of our struggles ever since we picked up the first tool back in prehistory.
One problem with the replicator is the sheer number of atoms that must be rearranged in order to copy an object. The human body, for example, has over 50 trillion cells and in excess of 10 26 atoms. That is a staggering number, requiring a colossal amount of memory space just to store the locations of all these atoms.
But one way to overcome this problem is to create a nanobot, a still-hypothetical molecular robot. These nanobots have several key properties. First, they can reproduce themselves. If they can reproduce once, then they can, in principle, create an unlimited number of copies of themselves. So the trick is to create just the first nanobot. Second, they are capable of identifying molecules and cutting them up at precise points. Third, by following a master code, they are capable of reassembling these atoms into different arrangements. So the task of rearranging 10 26 atoms is reduced to making a similar number of nanobots, each one designed to manipulate individual atoms. In this way, the sheer number of atoms of the body is no longer such a daunting obstacle. The real problem is creating just the first one of these mythical nanobots and letting it reproduce by itself.
However, the scientific community is split on the question of whether the full-blown dream of a nanofabricator is physically possible. A few, like Eric Drexler, a pioneer in nanotechnology and author of
The Engines of
Creation,
envision a future where all products are manufactured at the molecular level, creating a cornucopia of goods that we can only dream of today. Every aspect of society would be turned upside down by the creation of a machine
Weitere Kostenlose Bücher