Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
specifically create life-forms that can absorb large quantities of carbon dioxide. One enthusiastic promoter of this approach is J. Craig Venter, who gained fame and fortune pioneering high-speed techniques that successfully led to sequencing the human genome years ahead of schedule. “ We view the genome as the software, or even the operating system, of the cell,” he says. His goal is to rewrite that software, so that microbes can be genetically modified, or even constructed almost from scratch, so that they absorb the carbon dioxide from coal-burning plants and convert it into useful substances, such as natural gas. He notes, “There are already thousands, perhaps millions, of organisms on our planet that knowhow to do this.” The trick is to modify them so that they can increase their output and also flourish in a coal-fired plant. “We think this field has tremendous potential to replace the petrochemical industry, possibly within a decade,” he said optimistically.
Princeton physicist Freeman Dyson has advocated another variation, creating a genetically engineered variety of trees that would be adept at absorbing carbon dioxide. He has stated that perhaps a trillion such trees might be enough to control the carbon dioxide in the air. In his paper “Can We Control the Carbon Dioxide in the Atmosphere?” he advocated creating a “ carbon bank ” of “fast-growing trees” to regulate carbon dioxide levels.
However, as with any plan to use genetic engineering on a large scale, one must be careful about side effects. One cannot recall a life-form in the same way that we can recall a defective car. Once it is released into the environment, the genetically engineered life-form may have unintended consequences for other life-forms, especially if it displaces local species of plants and upsets the balance of the food chain.
Sadly, there has been a conspicuous lack of interest among politicians to fund any of these plans. However, one day, global warming will become so painful and disruptive that politicians will be forced to implement some of them.
The critical period will be the next few decades. By midcentury, we should be in the hydrogen age, where a combination of fusion, solar power, and renewables should give us an economy that is much less dependent on fossil fuel consumption. A combination of market forces and advances in hydrogen technology should give us a long-term solution to global warming. The danger period is now, before a hydrogen economy is in place. In the short term, fossil fuels are still the cheapest way to generate power, and hence global warming will pose a danger for decades to come.
FUSION POWER
By midcentury, a new option arises that is a game changer: fusion. By that time, it should be the most viable of all technical fixes, perhaps giving usa permanent solution to the problem. While fission power relies on splitting the uranium atom, thereby creating energy (and a large amount of nuclear waste), fusion power relies on fusing hydrogen atoms with great heat, thereby releasing vastly more energy (with very little waste).
Unlike fission power, fusion power unleashes the nuclear energy of the sun. Buried deep inside the hydrogen atom is the energy source of the universe. Fusion power lights up the sun and the heavens. It is the secret of the stars. Anyone who can successfully master fusion power will have unleashed unlimited eternal energy. And the fuel for these fusion plants comes from ordinary seawater. Pound for pound, fusion releases 10 million times more energy than gasoline. An 8-ounce glass of water is equal to the energy content of 500,000 barrels of petroleum.
Fusion (not fission) is nature’s preferred way to energize the universe. In star formation, a hydrogen-rich ball of gas is gradually compressed by gravity, until it starts to heat up to enormous temperatures. When the gas reaches around 50 million degrees or so (which varies depending on the specific conditions), the hydrogen nuclei inside the gas are slammed into one another, until they fuse to form helium. In the process, vast amounts of energy are released, which causes the gas to ignite. (More precisely, the compression must satisfy something called Lawson’s criterion, which states that you have to compress hydrogen gas of a certain density to a certain temperature for a certain amount of time. If these three conditions involving density, temperature, and time
Weitere Kostenlose Bücher