Bücher online kostenlos Kostenlos Online Lesen
Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Titel: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 Kostenlos Bücher Online Lesen
Autoren: Michio Kaku
Vom Netzwerk:
activity and prosperity.
    Various schemes have been devised to deal with this global crisis, but ultimately, a quick fix may not be enough. Only a major shift in the way we consume energy will solve the problem. Some technical measures have been advocated by serious scientists, but none has won wide acceptance. The proposals include:
     
    • Launching pollutants into the atmosphere. One proposal is to send rockets into the upper atmosphere, where they would releasepollutants, such as sulfur dioxide, in order to reflect sunlight into space, thereby cooling the earth. In fact, Nobel laureate Paul Crutzen has advocated shooting pollution into space as a “doomsday device,” providing one final escape route for humanity to stop global warming. This idea has its roots in 1991, when scientists carefully monitored the huge volcanic explosion of Mount Pinatubo in the Philippines, which lofted 10 billion metric tons of dirt and debris into the upper atmosphere. This darkened the skies and caused the average temperature around the earth to drop by 1° F. This made it possible to calculate how much pollutants would be necessary to reduce the world temperature. Although this is a serious proposal, some critics doubt that it can solve the problem by itself. Little is known about how a huge quantity of pollutants will affect the world temperature. Maybe the benefits will be short-lived, or the unintended side effects may be worse than the original problem. For example, there was a sudden drop in global precipitation after the Mount Pinatubo eruption; if the experiment goes awry, it could similarly cause massive droughts. Cost estimates show that $100 million would be required to conduct field tests. Since the effect of the sulfate aerosols is temporary, it would cost a minimum of $8 billion per year to regularly inject massive amounts of them into the atmosphere.
    • Creating algae blooms. Another suggestion is to dump iron-based chemicals into the oceans. These mineral nutrients will cause algae to thrive in the ocean, which in turn will increase the amount of carbon dioxide that is absorbed by the algae. However, after Planktos, a corporation based in California, announced that it would unilaterally begin a private effort to fertilize part of the South Atlantic with iron—hoping to deliberately spawn plankton blooms that would absorb the carbon dioxide in the air— countries bound by the London Convention, which regulates dumping at sea, issued a “statement of concern” about this effort. Also, a United Nations group called for a temporary moratorium on such experiments. The experiment was ended when Planktos ran out of funds.
    • Carbon sequestration. Yet another possibility is to use carbon sequestration, a process by which the carbon dioxide emitted fromcoal-burning power plants is liquefied and then separated from the environment, perhaps by being buried underground. Although this might work in principle, it is a very expensive process, and it cannot remove the carbon dioxide that has already been lofted into the atmosphere. In 2009, engineers were carefully monitoring the first major test of carbon sequestration. The huge Mountaineer power plant, built in 1980 in West Virginia, was retrofitted to separate carbon dioxide from the environment, making it the United States’ first electricity-generating coal-burning plant to experiment with sequestration. The liquefied gas will be injected 7,800 feet underground, eventually into a layer of dolomite. The liquid will eventually form a mass thirty to forty feet high and hundreds of yards long. The plant’s owner, American Electric Power, plans to inject 100,000 tons of carbon dioxide annually for two to five years. This is only 1.5 percent of the plant’s yearly emission, but eventually the system could capture up to 90 percent. The initial costs are about $73 million. But if it’s successful, then this model could rapidly be disseminated to other sites such as four nearby giant coal-burning plants generating 6 billion watts of energy (so much that this area is dubbed Megawatt Valley). There are large unknowns: it is not clear if the carbon dioxide will eventually migrate or if the gas will combine with water, perhaps creating carbonic acid that may poison groundwater. However, if the project is a success, it may very well be part of a mix of technologies used to deal with global warming.
    • Genetic engineering. Another proposal is to use genetic engineering to

Weitere Kostenlose Bücher