Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
don’t know who they are. In the future, you will be able to identify strangers and know their backgrounds, even as you speak to them. (This is somewhat like the world as seen through robotic eyes in
The Terminator.
)
This may alter the educational system. In the future, students taking a final exam will be able to silently scan the Internet via their contact lens for the answers to the questions, which would pose an obvious problem for teachers who often rely on rote memorization. This means that educators will have to stress thinking and reasoning ability instead.
Your glasses may also have a tiny video camera in the frame, so it can film your surroundings and then broadcast the images directly onto the Internet. People around the world may be able to share in your experiences as they happen. Whatever you are watching, thousands of others will be able to see it as well. Parents will know what their children are doing. Lovers may share experiences when separated. People at concerts will be able to communicate their excitement to fans around the world. Inspectors will visit faraway factories and then beam the live images directly to the contact lens of the boss. (Or one spouse may do the shopping, while the other makes comments about what to buy.)
Already, Parviz has been able to miniaturize a computer chip so that it can be placed inside the polymer film of a contact lens. He has successfully placed an LED (light-emitting diode) into a contact lens, and is now working on one with an 8 × 8 array of LEDs. His contact lens can be controlled by a wireless connection. He claims, “ Those components will eventually include hundreds of LEDs, which will form images in front of the eye, such as words, charts, and photographs. Much of the hardware is semitransparent so that wearers can navigate their surroundings without crashing into them or becoming disoriented.” His ultimate goal, which is still yearsaway, is to create a contact lens with 3,600 pixels, each one no more than 10 micrometers thick.
One advantage of Internet contact lenses is that they use so little power, only a few millionths of a watt, so they are very efficient in their energy requirements and won’t drain the battery. Another advantage is that the eye and optic nerve are, in some sense, a direct extension of the human brain, so we are gaining direct access to the human brain without having to implant electrodes. The eye and the optic nerve transmit information at a rate exceeding a high-speed Internet connection. So an Internet contact lens offers perhaps the most efficient and rapid access to the brain.
Shining an image onto the eye via the contact lens is a bit more complex than for the Internet glasses. An LED can produce a dot, or pixel, of light, but you have to add a microlens so that it focuses directly onto the retina. The final image would appear to float about two feet away from you. A more advanced design that Parviz is considering is to use microlasers to send a supersharp image directly onto the retina. With the same technology used in the chip industry to carve out tiny transistors, one can also etch tiny lasers of the same size, making the smallest lasers in the world. Lasers that are about 100 atoms across are in principle possible using this technology. Like transistors, you could conceivably pack millions of lasers onto a chip the size of your fingernail.
DRIVERLESS CAR
In the near future, you will also be able to safely surf the Web via your contact lens while driving a car. Commuting to work won’t be such an agonizing chore because cars will drive themselves. Already, driverless cars, using GPS to locate their position within a few feet, can drive over hundreds of miles. The Pentagon’s Defense Advanced Research Projects Agency (DARPA) sponsored a contest, called the DARPA Grand Challenge, in which laboratories were invited to submit driverless cars for a race across the Mojave Desert to claim a $1 million prize. DARPA was continuing its long-standing tradition of financing risky but visionary technologies.
(Some examples of Pentagon projects include the Internet, which was originally designed to connect scientists and officials during and after a nuclear war, and the GPS system, which was originally designed to guideICBM missiles. But both the Internet and GPS were declassified and given to the public after the end of the Cold War.)
In 2004, the contest had an embarrassing beginning, when not a single driverless car
Weitere Kostenlose Bücher