Eine kurze Geschichte der Zeit (German Edition)
Hälfte der Zeit zwischen dem Aussenden und dem Empfang des Pulses; die Entfernung des Ereignisses ist die Hälfte der Zeit, die er für den Hin- und Rückweg benötigt, multipliziert mit der Lichtgeschwindigkeit. (Ein Ereignis ist hier etwas, das an einem einzigen Punkt im Raum und an einem genau festgelegten Punkt in der Zeit stattfindet.) Diese Überlegung ist in Abbildung 2, einem Beispiel für ein Raumzeitdiagramm, dargestellt. Bei diesem Verfahren werden Beobachter, die sich relativ zueinander bewegen, ein und demselben Ereignis verschiedene Zeiten und Orte zuweisen. Es gibt keinen Beobachter, dessen Messungen richtiger wären als die irgendeines anderen, aber alle Messungen stehen zueinander in Beziehung. Jeder Beobachter kann genau ermitteln, welche Zeit und welchen Ort irgendein anderer Beobachter – vorausgesetzt, er kennt dessen relative Geschwindigkeit – dem Ereignis zuweisen wird.
Abb. 2: Die Zeit wird senkrecht gemessen, die Entfernung vom Beobachter waagerecht. Den Weg des Beobachters durch Zeit und Raum gibt die senkrechte Linie auf der linken Seite wieder. Die Bahnen des Radarpulses zum und vom Ereignis sind durch die diagonalen Linien dargestellt.
Heute benutzen wir diese Methode, um Entfernungen exakt zu bestimmen, weil wir Zeit genauer messen können als Länge. So ist der Meter definiert als die Strecke, die vom Licht in 0,000000003335640952 Sekunden zurückgelegt wird, gemessen von einer Cäsiumuhr. (Zu dieser besonderen Zahl kommt es, weil sie der historischen Definition des Meters entspricht – den beiden Markierungen auf dem in Paris aufbewahrten Platinstab.) Wir können aber auch eine neue, bequemere Längeneinheit verwenden: die Lichtsekunde. Sie wird einfach definiert als die Entfernung, die das Licht in einer Sekunde zurücklegt. In der Relativitätstheorie definieren wir Entfernung durch die Zeit und die Lichtgeschwindigkeit, woraus automatisch folgt, daß jeder Beobachter zu dem gleichen Ergebnis kommen wird, wenn er die Geschwindigkeit des Lichts mißt (definitionsgemäß 1 Meter pro 0,000000003335640952 Sekunden). Es besteht keine Notwendigkeit, einen Äther anzunehmen, dessen Existenz sowieso nicht nachgewiesen werden könnte, wie das Michelson-Morley-Experiment gezeigt hat. Die Relativitätstheorie zwingt uns jedoch, unsere Vorstellungen von Raum und Zeit grundlegend zu ändern. Wir müssen uns mit dem Gedanken anfreunden, daß die Zeit nicht völlig losgelöst und unabhängigvom Raum existiert, sondern sich mit ihm zu einer Entität verbindet, die wir Raumzeit nennen.
Aus der alltäglichen Erfahrung wissen wir, daß man die Position eines Punktes im Raum durch drei Zahlen – Koordinaten – angeben kann. Beispielsweise kann man sagen, daß ein Punkt in einem Zimmer vier Meter von der einen Wand, drei Meter von einer anderen und zwei Meter vom Fußboden entfernt ist. Oder man kann einem Punkt einen Breitengrad, einen Längengrad und eine Höhe über dem Meeresniveau zuweisen. So lassen sich immer jeweils drei geeignete Koordinaten verwenden, auch wenn sie nur von eingeschränkter Gültigkeit sind. Sicherlich würde man die Position des Mondes nicht in Kilometern nördlich und westlich vom Kölner Dom und in Metern über dem Meeresspiegel angeben. Statt dessen könnte man sie durch die Entfernung von der Sonne bestimmen, durch den Abstand von der Bahnebene der Planeten und durch den Winkel, den die Verbindungslinie von Mond und Sonne und die Verbindungslinie zwischen der Sonne und einem nahe gelegenen Stern wie Alpha Centauri bilden. Selbst diese Koordinaten wären nicht von großem Nutzen, wollte man die Position der Sonne in unserer Galaxis oder die Position unserer Galaxis in der Lokalen Gruppe bestimmen. Man könnte das ganze Universum als eine Reihe einander überschneidender Flecken beschreiben. In jedem von ihnen ließe sich eine andere Zusammenstellung von drei Koordinaten benutzen, um den Ort eines Punktes anzugeben.
Ein Ereignis ist etwas, das an einem bestimmten Punkt im Raum und zu einer bestimmten Zeit geschieht. Deshalb kann man es durch vier Zahlen oder Koordinaten bestimmen. Wiederum ist die Wahl der Koordinaten beliebig: Jedes System von drei hinreichend definierten Raumkoordinaten und jedes Zeitmaß sind zulässig. Die Relativitätstheorie unterscheidet im Grunde nicht zwischen Raum- und Zeitkoordinaten, wie es in ihr auch keinen wirklichen Unterschied zwischen zwei beliebigen Raumkoordinaten gibt. Man könnte ein neues Koordinatensystem wählen,
Weitere Kostenlose Bücher