Kosmologie für Fußgänger
messen, aber in den Spiralnebeln selbst waren noch keine Cepheiden gefunden worden. Alles sprach zwar für die Selbstständigkeit der Spiralnebel als unabhängige Galaxien, aber der schlagende Beweis war nicht erbracht – noch nicht! Niemand konnte sich vorstellen, dass das Universum aus Galaxien besteht, die alle einige hunderttausend Lichtjahre groß sein sollten und Millionen Lichtjahre voneinander entfernt wären. Die Milchstraße wäre dann ja eine unter vielen. Der Mensch hätte nach der Erde und der Sonne schon wieder einen besonderen Platz im All verloren. Nach menschlichem Ermessen konnte, ja durfte das nicht so sein.
Um diesen Knoten schließlich zu entwirren, musste erst ein begeisterter Hobbyastronom die Bühne betreten. Dieser Mann war Edwin Hubble. Zunächst hatte er als examinierter Jurist seinen Lebensunterhalt verdient und wäre so beinahe der Astronomie verloren gegangen. Doch nach längerem Hin und Her entschloss er sich schließlich, an die Universität von Chicago zu gehen, um sich dort seinen Kindheitstraum zu erfüllen – nämlich Astronomie zu studieren.
Hubble entdeckte 1923 auf Fotoplatten vom Andromedanebel einen Lichtpunkt, den er zunächst für eine Nova hielt. Ein Vergleich mit älteren Fotoplatten machte jedoch deutlich: Das war keine Nova, sondern ein Stern, der sehr regelmäßig seine Helligkeit änderte. Kurz und gut, es war ein Cepheid. Aber der Stern war sehr leuchtschwach, erheblich schwächer sogar als die Shapley’schen Cepheiden in den Kugelsternhaufen. Andromeda musste also viel weiter entfernt sein als die Kugelhaufen. Hubble berechnete die Entfernung auf 900 000 Lichtjahre.
Wie wir heute wissen, ist dieser Wert zu niedrig. Richtig wären 2,2 Millionen Lichtjahre. Entscheidend war jedoch, dass damit endlich klar wurde, dass dieser »Spiralnebel« außerhalb unserer Milchstraße liegt und es sich somit um eine eigenständige Galaxie handelt. Die Gegner der Galaxientheorie gaben sich geschlagen. Folglich sprach man auch nicht mehr vom Andromedanebel, sondern von der Andromedagalaxie. Damit erschien das Universum erneut um einiges größer, als man bis dahin geglaubt hatte. Es hatte offenbar unvorstellbar große Ausmaße.
Trotz dieses Triumphs der beobachtenden Astronomie blieben Fragen offen, vor allem die merkwürdigen Rotverschiebungen, die Slipher in etlichen Spiralnebeln gefunden hatte, waren nach wie vor rätselhaft. Wenn diese Nebel auch unabhängige Galaxien waren, was veranlasste dann solch riesige Sternansammlungen zu den beobachteten Fluchtgeschwindigkeiten? Es blieb ein merkwürdiges Gefühl bei dem Gedanken an derart unbekannte Kräfte, die Galaxien mit mehreren hundert Kilometern pro Sekunde bewegen können. Auch hier sollte Edwin Hubble die entscheidende Entdeckung gelingen.
Aber jetzt zurück zum Wesentlichen. Denn eigentlich wollen wir ja verschiedene Entfernungsmessmethoden vorstellen und nicht so sehr das viele Hin und Her und den ganzen Streit darüber ausbreiten, ob denn nun die Milchstraße die einzige große Galaxie im All wäre oder nicht. Wenden wir uns also wieder unserem Vorhaben zu. Die Cepheiden reichen nämlich nicht aus. Das Universum ist noch viel, viel größer, als selbst die größten Optimisten Anfang der Dreißigerjahre gedacht hatten. Um derartige Entfernungen zu messen, sind andere Methoden erforderlich.
Die Tully-Fisher-Korrelation
Bei sehr weit entfernten Galaxien hat man keine Möglichkeit mehr, die einzelnen Sterne aufzulösen und aus dem Gewimmel einen bestimmten Typ, zum Beispiel einen Cepheiden, herauszufischen. Hier versagt die Entfernungsbestimmung anhand der Perioden-Helligkeits-Beziehung. Aber es bietet sich etwas Neues an, eine Methode nämlich, die zwei Messungen in verschiedenen Wellenlängenbereichen des elektromagnetischen Spektrums kombiniert.
Die erste Messung wird im optischen oder infraroten Bereich durchgeführt. Mit ihr bestimmt man die scheinbare Leuchtkraft der gesamten Galaxie. Mit der zweiten Messung im Bereich der Radiowellenlängen kann man anhand des Dopplereffekts erkennen, wie schnell sich eine Spiralgalaxie um ihre eigene Achse dreht. Das Schöne an dieser Methode ist, dass, ähnlich wie bei den Cepheiden, eine eindeutige Beziehung zwischen der scheinbaren Helligkeit der Galaxie und ihrer Rotationsgeschwindigkeit besteht: Je heller die Galaxie, desto schneller dreht sie sich. Genauer gesagt: Die Helligkeit ist proportional zur vierten Potenz der Rotationsgeschwindigkeit.
Warum das so ist? Nun,
Weitere Kostenlose Bücher