Bücher online kostenlos Kostenlos Online Lesen
Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Titel: Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100 Kostenlos Bücher Online Lesen
Autoren: Michio Kaku
Vom Netzwerk:
for space-based solar power was made in 1968, when Peter Glaser, president of the International Solar Energy Society, proposed sending up satellites the size of a modern city to beam power down to the earth. In 1979, NASA scientists took a hard look at his proposal and estimated that the cost would be several hundred billion dollars, which killed the project.
    But because of constant improvements in space technology, NASA continued to fund small-scale studies of SSP from 1995 to 2003. Its proponents maintain that it is only a matter of time before the technology and economics of SSP make it a reality. “ SSP offers a truly sustainable, global-scale and emission-free electricity source,” says Martin Hoffert, a physicist formerly at New York University.
    There are formidable problems facing such an ambitious project, real and imaginary. Some people fear this project because the energy beamed down from space might accidentally hit a populated area, creating massive casualties. However, this fear is exaggerated. If one calculates the actual radiation hitting the earth from space, it is too small to cause any health hazard. So visions of a rogue space satellite sending death rays down to earth to fry entire cities is the stuff of a Hollywood nightmare.
    Science fiction writer Ben Bova, writing in the
Washington Post in 2009, laid out the daunting economics of a solar power satellite. He estimated that each satellite would generate 5 to 10 gigawatts of power, much more than a conventional coal-fired plant, and cost about eight to ten cents per kilowatt-hour, making it competitive. Each satellite would be huge, about a mile across, and cost about a billion dollars, roughly the cost of a nuclear plant.
    To jump-start this technology, he asked the current administration to create a demonstration project, launching a satellite that could generate 10 to 100 megawatts. Hypothetically, it could be launched at the end of President Obama’s second term in office if plans are started now.
    Echoing these comments was a major initiative announced by the Japanese government. In 2009, the Japanese Trade Ministry announced a plan to investigate the feasibility of a space power satellite system. Mitsubishi Electric and other Japanese companies will join a $10 billion program to perhaps launch a solar power station into space that will generate a billion watts of power. It will be huge, about 1.5 square miles in area, covered with solar cells.
    “ It sounds like a science fiction cartoon, but solar power generation in space may be a significant alternative energy source in the century ahead as fossil fuel disappears,” said Kensuke Kanekiyo of the Institute of Energy Economics, a government research organization.
    Given the magnitude of this ambitious project, the Japanese governmentis cautious. A research group will first spend the next four years studying the scientific and economic feasibility of the project. If this group gives the green light, then the Japanese Trade Ministry and the Japanese Aerospace Exploration Agency plan to launch a small satellite in 2015 to test beaming down energy from outer space.
    The major hurdle will probably not be scientific but economic. Hiroshi Yoshida of Excalibur KK, a space consulting company in Tokyo, warned, “ These expenses need to be lowered to a hundredth of current estimates.” One problem is that these satellites have to be 22,000 miles in space, much farther than satellites in near-earth orbits of 300 miles, so losses in transmission could be huge.
    But the main problem is the cost of booster rockets. This is the same bottleneck that has stymied plans to return to the moon and explore Mars.
    Unless the cost of rocket launches goes down significantly, this plan will die a quiet death.
    Optimistically, the Japanese plan could go operational by midcentury. However, given the problems with booster rockets, more likely the plan will have to wait to the end of the century, when new generations of rocket drive down the cost. If the main problem with solar satellites is cost, then the next question is: Can we reduce the cost of space travel so that one day we might reach the stars?

We have lingered long enough on the shores of the cosmic ocean. We are ready at last to set sail for the stars.
    —CARL SAGAN

6 FUTURE OF SPACE TRAVEL To the Stars
    In powerful chariots, the gods of mythology roamed across the heavenly fields of Mount Olympus. On powerful Viking ships, the Norse gods sailed

Weitere Kostenlose Bücher