Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
it may take several human life spans to build a ship that can reach the stars.
The solar sail takes advantage of the fact that, although light has no mass, it has momentum, and hence can exert pressure. Although light pressurefrom the sun is extremely tiny, too small to be felt by our hands, it is enough to drive a starship if the sail is big enough and we wait long enough. (Sunlight is eight times more intense in space than on the earth.)
Johnson told me his goal is to create a gigantic solar sail, made of very thin but resilient plastic. The sail would be several miles across and built in outer space. Once assembled, it would slowly revolve around the sun, gaining more and more momentum as it moves. After several years orbiting the sun, the sail would spiral out of the solar system and on to the stars. Such a solar sail, he told me, could send a probe to 0.1 percent the speed of light and perhaps reach the nearest star in four hundred years.
In order to cut down the time necessary to reach the stars, Johnson has looked into ways to add an extra boost to the solar sail. One possibility is to put a huge battery of lasers on the moon. The laser beams would hit the sail and give it added momentum as it sailed to the stars.
One problem with a solar sail–driven spaceship is that it is difficult to stop and reverse, since light moves outward from the sun. One possibility is to reverse the direction of the sail and use the destination star’s light pressure to slow down the spacecraft. Another possibility is to sail around the distant star, using the star’s gravity to create a slingshot effect for the return voyage. And yet another possibility is to land on a moon, build laser batteries, and then sail back on the star’s light and the laser beams from that moon.
Although Johnson has stellar dreams, he realizes that the reality is much more modest. In 1993, the Russians deployed a sixty-foot Mylar reflector in space from the Mir space station, but it was only to demonstrate deployment. A second attempt failed. In 2004, the Japanese successfully launched two solar sail prototypes, but again it was to test deployment, not propulsion. In 2005, there was an ambitious attempt by the Planetary Society, Cosmos Studios, and the Russian Academy of Sciences to deploy a genuine solar sail called Cosmos 1. It was launched from a Russian submarine. However, the Volna rocket misfired and failed to reach orbit. And in 2008, a team from NASA tried to launch a solar sail called NanoSail-D, but it was lost when the Falcon 1 rocket failed.
But finally, in May 2010, the Japan Aerospace Exploration Agency successfully launched the IKAROS, the first spacecraft to use solar-sail technology in interplanetary space. It has a square-shaped sail, 20 meters (60feet) on the diagonal, and uses solar-sail propulsion to travel on its way to Venus. The Japanese eventually hope to send another ship to Jupiter using solar-sail propulsion.
NUCLEAR ROCKET
Scientists have also considered using nuclear energy to drive a starship. Beginning in 1953, the Atomic Energy Commission began to look seriously at rockets carrying atomic reactors, beginning with Project Rover. In the 1950s and 1960s, experiments with nuclear rockets ended mainly in failure. They tended to be unstable and too complex to handle properly. Also, an ordinary fission reactor, one can easily show, simply does not produce enough energy to drive a starship. A typical nuclear power plant produces about a billion watts of power, not enough to reach the stars.
But in the 1950s, scientists proposed using atomic and hydrogen bombs, not reactors, to drive a starship. The Orion Project, for example, proposed a rocket propelled by a succession of nuclear blast waves from a stream of atomic bombs. A starship would drop a series of atomic bombs out its back, creating a series of powerful blasts of X-rays. This shock wave would then push the starship forward.
In 1959, physicists at General Atomics estimated that an advanced version of Orion would weigh 8 million tons, with a diameter of 400 meters, and be powered by 1,000 hydrogen bombs.
One enthusiastic proponent of the Orion project was physicist Freeman Dyson. “ For me, Orion meant opening up the whole solar system to life. It could have changed history,” he says. It would also have been a convenient way to get rid of atomic bombs. “With one trip, we’d have got rid of 2,000 bombs,” he says.
What killed Project Orion, however,
Weitere Kostenlose Bücher