Self Comes to Mind
brain during the physical interaction of an object with the body. Signals sent by sensors located throughout the body construct neural patterns that map the organism’s interaction with the object. The neural patterns are formed transiently in the varied sensory and motor regions of the brain that normally receive signals coming from specific body regions. The assembling of the transient neural patterns is made from a selection of neuron circuits recruited by the interaction. One can conceive of those neuron circuits as preexisting building blocks within the brain.
Brain mapping is a distinctive functional feature of a system devoted to managing and controlling the life process. The brain’s mapping ability serves its managing purpose. At a simple level, the mapping may detect the presence or provide the position of an object in space or the direction of its trajectory. That may be helpful to track either a danger or an opportunity, and either to avoid it or to seize it. And when our minds avail themselves of multiple maps of every sensory variety and create a multiplex perspective on the universe external to the brain, we can respond to the objects and events in that universe with greater precision. Moreover, once maps are committed to memory and can be brought back in imaginative recall, we are able to plan ahead and invent better responses.
The Neurology of Mind
Is it reasonable to ask which parts of the brain are mind-competent and which parts are not? The question is tricky but legitimate. A century and a half of research on the consequences of brain lesions provides the evidence we need to sketch a preliminary answer. Certain brain regions, in spite of their important contributions to major brain functions, are not involved in basic mind-making. Certain regions are definitely involved in making mind at a basic, indispensable level. And some other regions assist in mind-making, with tasks that involve the generation and regeneration of images, as well as management of image flow, such as editing of images and creation of continuities.
The entire spinal cord is apparently not essential to basic mind-making. The complete loss of the spinal cord results in severe motor defects, profound losses of body sensation, and some dampening of emotion and feeling. However, as long as the vagus nerve, which runs parallel to the spinal cord, is preserved (as it almost always is in such cases), the cross-signaling between brain and body remains robust enough to ensure autonomic control, to operate basic emotions and feelings, and to maintain the aspects of consciousness that require body input. Mind-making is definitely not obliterated by spinal cord damage, as we know so well from all the sad cases of people injured in accidents, at whatever level of the spinal cord the accident does its damage. Christopher Reeve’s fine mind survived his extensive spinal cord damage, as did his consciousness. Outwardly, as I recall from meeting him, only the subtle operation of his emotional expressions had been slightly compromised. I suspect that mental representations of somatosensory stimuli from limbs and trunk are fully assembled only at the level of upper-brain-stem nuclei, with signals hailing from both spinal cord and vagus nerve, thus leaving the spinal cord in a peripheral position relative to basic mind-making. (Another way of positioning the spinal cord relative to mind-making is to say that its contributions are not missed by one’s global function even if, when the contributions are present, they can be well appreciated. After spinal cord transections, patients will not feel pain but will show “pain-related” reflexes, indicating that the mapping of tissue injury is still being carried out at cord level but not signaled upward to the brain stem and cerebral cortex.)
The same dispensation applies to the cerebellum, certainly in the case of adults. The cerebellum plays important roles in the coordination of movement and the modulation of emotion, and it is involved in the learning and recall of skills and in cognitive aspects of skill development. But mind-making of the basic kind, as far as one can tell, is not its thing. We can say the same about the hippocampus, which is critical for learning new facts and which is regularly engaged by the normal process of recall but whose absence does not compromise basic mind-making. Both the cerebellum and the hippocampus are assistants to the editing and continuity
Weitere Kostenlose Bücher