Starting Strength
exercise.
Figure 3-3. A comparison of the kinetic-chain vectors of the press, typical football activity, and the bench press. Note that in the lineman’s effort, force is being applied both vertically and horizontally. The press strongly develops the athlete’s ability to push through a range of directions while driving from the ground. The bench press is more limited in the applicability of the strength it produces, although it allows the use of heavier weights.
As a general rule, the more of the body involved in an exercise, the better the exercise. The press produces strength in the trunk muscles – the abs, obliques, costals, and back – as well as in the shoulders and arms. It trains the whole body to balance while standing and pressing with a heavy weight in the hands and overhead. It uses more muscles and more central nervous system activity than any other upper-body exercise. And it produces force in a more useful direction than does the bench press, in which force is directed at about 90 degrees away from the trunk. In football, the arms are usually used at an angle well above 90 degrees. The press, producing force vertically overhead, is not an exact match, but it is much closer to a useful direction than the bench press is. More important, if football players put their backs against solid objects positioned at an inclined angle and pushed against them, the incline bench press would be a pretty good exercise. They don’t. Programs that have switched to the incline because of the supposedly improved carryover ignore the important kinetic-chain element of the press that makes it such an important exercise.
It is in fact possible to press a lot more weight while lying on the bench than while standing with the bar in the hands. So for simple upper-body strength, the bench press is the better exercise. Doing both exercises enables the strength developed from the bench press to be applied in a more useful way for sports. Athletes who never do anything but bench press tend to have more shoulder problems than those who include overhead training. With all the pressing emphasis directed to the anterior side of the shoulders, the posterior side gets relatively weak. Since it is possible to bench very heavy weights with years of training, this strength imbalance can be very pronounced.
The posterior shoulder musculature includes the very important rotator cuff group of external rotators, the muscles responsible for decelerating internal humeral rotation during throwing movements ( Figure 3-4 ). The rotator cuff basically consists of the muscles on the anterior and posterior sides of the shoulder blade. The subscapularis covers the front of the scapula between it and the rib cage, and functions as an internal rotator. The supraspinatus, the infraspinatus, and the teres minor attach various points on the posterior scapula to the humerus, and provide for its external rotation as well as deceleration of internal rotation (as when a thrown ball is released). In a press, they do not work directly as the primary muscles producing the movement, but they are used as stabilizers and are therefore strengthened in this capacity. In contrast, the bench press does not work the external rotators much, certainly not much in comparison to the loads being handled by the pectorals and anterior deltoids, which function as the main internal rotators of the humerus. If the internal rotators become disproportionately strong, enough to exceed the capacity of the external rotators to decelerate the humerus during a throw, injuries can and often do occur.
Figure 3-4. (A) Posterior view of the rotator cuff muscles. (B) They decelerate internal rotation of the humerus during throwing.
An injury usually attributed to the press by physical therapists and other medical types is the situation called shoulder impingement . Most of the time, PTs advise against using the press because of the supposed tendency of the tendons of the rotator cuff muscles to become trapped between the head of the humerus and the bony projections on the scapula − the coracoid and acromion processes. These bony knobs function as attachment points for the biceps, the pec minor, the coracobrachialis muscle, and the ligaments that hold the scapula and the clavicle together at the acromioclavicular (AC) joint. The coracoid and acromion processes overhang the head of the humerus where it articulates with the glenoid. Because the external rotators, specifically the
Weitere Kostenlose Bücher