Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]
hat der Nobelpreisträger Julian Schwinger gesagt: »Das ist nur ein weiteres Symptom für den Drang, der jede Generation von Physikern heimsucht – das Verlangen, alle grundlegenden Fragen zu ihren Lebzeiten beantwortet zu wissen.« 3
Doch in den achtziger Jahren begann der Quantentheorie »aus Holz« nach einem halben Jahrhundert fast ununterbrochener Erfolge die Luft auszugehen. Lebhaft kann ich mich an das Gefühl des Überdrusses erinnern, das sich damals unter den enttäuschten jungen Physikern breitmachte. Alle hatten sie das Empfinden, daß das Standardmodell an seinem eigenen Erfolg zugrunde ging. Es war so erfolgreich, daß jede internationale Physikkonferenz zu einer Akklamationsveranstaltung zu mißraten schien. In jedem Referat wurde von einem weiteren langweiligen Experimentalerfolg des Standardmodells berichtet. Ich erinnere mich noch, daß bei einer solchen Tagung die Hälfte der Zuschauer eingedöst war, während der Redner Graphik um Graphik zeigte und nachwies, daß sich auch die neuesten Daten mit dem Standardmodell deckten.
Ich fühlte mich wie die Physiker während der Jahrhundertwende. Auch sie schienen sich in einer Sackgasse zu befinden. Jahrzehnte verbrachten sie damit, Zahlentabellen für die Spektrallinien verschiedener Gase auszufüllen oder die Lösungen der Maxwellschen Gleichungen für immer kompliziertere Metalloberflächen zu berechnen. Da das Standardmodell neunzehn freie Parameter hatte, die, wie die Senderskalen eines Radios, beliebig auf jeden Wert »eingestellt« werden konnten, dachte ich, die Physiker würden die nächsten Jahrzehnte damit verbringen, die genauen Werte für alle neunzehn Parameter zu suchen.
Die Zeit war reif für eine Revolution. Was die nächste Physikergeneration lockte, war die Marmorwelt.
Natürlich standen einer echten Quantentheorie der Gravitation noch einige schwierige Probleme im Wege. Zum einen ist die Kraft, um die es geht, extrem schwach. So bedarf es beispielsweise der gesamten Erdmasse, um ein paar Papierschnipsel auf meinem Schreibtisch zu halten. Und schon mit einem Kamm, mit dem ich mir durchs Haar gefahren bin, kann ich diese Papierstücke anziehen und so die Kraft des Planeten Erde überwinden. Die Elektronen in meinem Kamm sind stärker als die Schwerkraft des gesamten Planeten. Würden wir versuchen, ein »Atom« zu konstruieren, das die Elektronen mittels der Gravitation und nicht der elektrischen Kraft an den Kern bindet, so müßte dieses Atom so groß wie das Universum sein.
Nach der klassischen Physik läßt sich die Gravitation im Vergleich zur elektromagnetischen Kraft vernachlässigen und ist deshalb außerordentlich schwer zu messen. Doch wenn wir versuchen, eine Quantentheorie der Gravitation zu entwickeln, wendet sich das Blatt. Die gravitationsbedingten Quantenkorrekturen bewegen sich in der Größenordnung der Planckschen Energie, lo 1 ? Milliarden Elektronenvolt, und übertreffen damit bei weitem alle Energien, die in diesem Jahrhundert auf der Erde erreichbar sind. Diese überraschende Situation verstärkt sich noch, wenn wir versuchen, eine vollständige Theorie der Quantengravitation zu entwerfen. Wie erwähnt, wird eine Kraft bei der Quantelung in winzige Energiepäckchen, eben die Quanten, zerlegt. Versucht man blindlings, die Gravitationstheorie zu quantein, so postuliert man, daß sie auf dem Austausch winziger Gravitationspäckchen, der Gravitonen, beruht. Danach wird die gravitationelle Bindung der Materie durch den raschen Austausch von Gravitonen hervorgerufen. Wir haften also am Boden, statt mit tausend oder mehr Kilometern pro Stunde durchs All zu sausen, weil sich ein unsichtbarer Austausch von Billionen winziger Graviton-Teilchen vollzieht. Doch jedesmal, wenn Physiker versucht haben, einfache Quantenkorrekturen an Newtons und Einsteins Gravitationsgesetzen vorzunehmen, stießen sie auf unendliche, das heißt nutzlose Ergebnisse.
Betrachten wir beispielsweise, was geschieht, wenn zwei elektrisch neutrale Teilchen zusammenstoßen. Um die Feynman-Diagramme dieser Theorie zu berechnen, ist eine Näherung erforderlich. Wir nehmen also an, die Krümmung der Raumzeit sei klein und der Riemannsche Maßtensor deshalb nahe eins. In einer ersten Annäherung gehen wir also davon aus,
Abbildung 6.1. (a) In der Quantentheorie heißt ein Quantum der Gravitationkraft Graviton, durch h bezeichnet. Es wird durch Zerlegung der Riemannschen Metrik gebildet. Nach dieser Theorie
Weitere Kostenlose Bücher