Bücher online kostenlos Kostenlos Online Lesen
Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]

Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]

Titel: Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache] Kostenlos Bücher Online Lesen
Autoren: Michio Kaku
Vom Netzwerk:
sich Marmor in Holz verwandeln – das heißt, sie wollten Einsteins Maßtensor in ein Graviton verwandeln, ein diskretes Energiepäckchen, das die Gravitationskraft trägt. Das sind zwei völlig entgegengesetzte Standpunkte, so daß man lange Zeit meinte, es sei kein Kompromiß zwischen ihnen möglich. Doch der String ist genau das »fehlende Bindeglied« zwischen Holz und Marmor.
       So kann die Stringtheorie Materieteilchen als Resonanzen ableiten, die auf dem String schwingen. Und auch Einsteins Gleichungen kann die Stringtheorie ableiten, indem sie verlangt, daß der String sich konsistent in der Raumzeit bewegt. Auf diese Weise erhalten wir eine umfassende Theorie sowohl der Materie-Energie als auch der Raumzeit. Diese konsistenten Einschränkungen sind überraschend streng. Beispielsweise verbieten sie dem String, sich in drei oder vier Dimensionen zu bewegen. Wie wir noch sehen werden, zwingen die Konsistenzbedingungen den String, sich in einer bestimmten Anzahl von Dimensionen zu bewegen. Tatsächlich sind die »magischen Zahlen«, die die Stringtheorie einzig erlaubt, zehn und sechsundzwanzig. Zum Glück bietet eine Stringtheorie, die in diesen Dimensionen definiert ist, genügend »Platz«, um alle fundamentalen Kräfte zu vereinigen.
       Deshalb ist die Stringtheorie vielseitig genug, um alle fundamentalen Naturgesetze zu erklären. Von der einfachen Theorie eines schwingenden String ausgehend, kann man Einsteins Theorie, die Kaluza-Klein-Theorie, die Supergravitation, das Standardmodell und sogar die GUT ableiten. Man muß es wohl als Wunder bezeichnen, daß man alle Errungenschaften, die die Physik in den letzten zweitausend Jahren erworben hat, aus rein geometrischen Argumenten, einem String, wiedergewinnen kann. Alle bislang in diesem Buch erörterten Theorien sind automatisch in der Stringtheorie enthalten.
       Für das gegenwärtige Interesse an der Stringtheorie ist die Arbeit von John Schwarz, California Institute of Technology, und seinem Kollegen Michael Green, Queen Mary’s College in London, verantwortlich. Früher glaubte man, der String weise möglicherweise Mängel auf, die eine vollkommen konsistente Theorie nicht zuließen. 1984 bewiesen diese beiden Physiker, daß man allen Konsistenzbedingungen auf dem String genügen kann. Das wiederum löste unter jungen Physikern den wilden Eifer aus, die Theorie vollständig zu entwickeln und physikalischen Ruhm zu ernten. Ende der achtziger Jahre setzte ein regelrechter physikalischer »Goldrausch« ein. (Der Konkurrenzkampf unter Hunderten der klügsten theoretischen Physiker, die alle daraufbrennen, dieses Problem zu lösen, ist ziemlich heftig. So zeigte das Titelblatt der angesehenen Zeitschrift Discover den Stringtheoretiker D. V. Nanopoulous aus Texas, der sich offen rühmte, er sei auf dem besten Wege, den Nobelpreis für Physik zu gewinnen. Selten hat eine abstrakte Theorie derartige Leidenschaften geweckt.)

    Warum ausgerechnet Strings (Fäden)?
    Einmal habe ich mit einem Nobelpreisträger für Physik in einem New Yorker Chinarestaurant gegessen. Bei Schweinefleisch süßsauer kamen wir auf die Superstringtheorie zu sprechen. Ohne Vorwarnung ließ er einen langen persönlichen Vortrag vom Stapel, in dem er erläuterte, warum die Superstringtheorie ein Irrweg für junge Physiker sei. Sie jagten Hirngespinsten nach, behauptete er. Nie habe es etwas Vergleichbares in der Geschichte der Physik gegeben, deshalb sei sie zu exotisch für seinen Geschmack. Der Entwurf sei zu fremd, liege quer zu allen früheren Theorien der Physik. Nach langer Diskussion liefen seine Einwände auf eine einzige Frage hinaus: Warum ausgerechnet Strings? Warum nicht schwingende Festkörper oder Blobs (Klümpchen oder Tröpfchen)?
       Die physikalische Welt verwende, so rief er mir ins Gedächtnis, immer wieder die gleichen Konzepte. Wie ein Stück von Bach oder Beethoven sei die Natur; häufig beginne sie mit einem Hauptthema und verstreue dann eine unendliche Zahl von Variationen über die ganze Symphonie. Lege man dieses Kriterium zugrunde, dann seien Strings offenbar keine fundamentalen Konzepte der Natur.
       Beispielsweise tauche das Konzept der Kreisbahnen oder Orbits in der Natur in immer neuen Variationen auf. Seit dem Werk des Kopernikus hätten sich alle Orbits als Thema von zentraler Bedeutung erwiesen, das von den größten Galaxien bis zum Atom und dem kleinsten subatomaren Teilchen in immer neuen Variationen wiederholt werde. In

Weitere Kostenlose Bücher