Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]
meines Lebens.« Und er fährt fort: »Die Superstringtheorie ist besonders deswegen attraktiv, weil sie die Gravitation einschließt. Während die Beschreibung der Gravitation in der Quantenfeldtheorie unmöglich ist, ist sie ein obligatorischer Bestandteil aller bekannten Versionen der Stringtheorie.« 6
Gross findet Gefallen an der Vorstellung, daß Einstein, lebte er noch, von der Superstringtheorie begeistert wäre. Dem gefiele nämlich, daß die Schönheit und Einfachheit der Superstringtheorie sich letztlich aus einem geometrischen Prinzip herleitet, dessen genaue Beschaffenheit allerdings noch nicht bekannt ist. Gross behauptet: »Darüber hätte sich Einstein sehr gefreut – zumindest über die Zielsetzung, wenn nicht auch über die Realisierung dieses Vorhabens … Es hätte ihm gefallen, daß das zugrunde liegende Prinzip geometrischer Natur ist – auch wenn wir dieses Prinzip zur Zeit leider noch nicht verstehen.« 7
Witten geht sogar noch weiter und erklärt, »alle wirklich großen Ideen in der Physik« seien »Ableger« der Superstringtheorie. Damit meint er, daß alle bedeutenden Errungenschaften der theoretischen Physik in der Superstringtheorie enthalten seien. Nach seiner Auffassung ist der Umstand, daß die Relativitätstheorie vor der Superstringtheorie entdeckt worden ist, »ein bloßer Zufall der Entwicklung auf dem Planeten Erde«. Irgendwo im All, so behauptet er, könnten »andere Zivilisationen des Universums« sehr wohl die Superstringtheorie zuerst entdeckt und die allgemeine Relativität als Nebeneffekt abgeleitet haben. 8
Kompaktifizierung und Schönheit
In der Physik gilt die Stringtheorie als vielversprechender Kandidat, weil sie für die in der Teilchenphysik entdeckten Symmetrien und die allgemeine Relativität einen einfachen Ursprung liefert.
In Kapitel sechs haben wir gesehen, daß die Supergravitation nichtrenormierbar und zu klein war, um die Symmetrie des Standardmodells aufzunehmen. Folglich war sie nicht konsistent und ermöglichte keine realistische Beschreibung der bekannten Teilchen. Beide Bedingungen erfüllt hingegen die Stringtheorie. Wie wir bald sehen werden, beseitigt sie die Unendlichkeiten bisheriger Vereinigungsversuche und liefert damit eine endliche Theorie der Quantengravitation. Das allein würde genügen, um die Stringtheorie als ernsthaften Kandidaten fur eine Theorie des Universums zu empfehlen. Doch sie hat noch einen weiteren Vorteil. Wenn wir einige Dimensionen des Strings kompaktifizieren, stellen wir fest, daß die Theorie »genügend Platz« für die Symmetrien des Standardmodells und sogar der GUTs bietet.
Der heterotische String besteht aus einem geschlossenen String mit zwei Schwingungsmoden, im Uhrzeigersinn und gegen den Uhrzeigersinn, die unterschiedlich behandelt werden. Die Schwingungen im Uhrzeigersinn finden in einem zehndimensionalen Raum statt. Wenn die Schwingungen gegen den Uhrzeigersinn erfolgen, ist ein sechsundzwanzigdimensionaler Raum erforderlich, wobei sechzehn Dimensionen kompaktifiziert sind. (Wie wir uns erinnern, wurde in Kaluzas ursprünglicher fünfdimensionaler Theorie die fünfte Dimension kompaktifiziert, indem man sie zu einem Kreis aufwickelte.) Seinen Namen verdankt der heterotische String dem Umstand, daß die im und gegen den Uhrzeigersinn verlaufenden Schwingungen in zwei verschiedenen Dimensionen stattfinden, daß sie sich aber zu einer einzigen Superstringtheorie verbinden lassen. Deshalb hat man sie nach dem griechischen Wort he terosis, »verschiedenartige Kraft«, benannt.
Besonders interessant ist der sechzehndimensionale Raum. Wie wir gesehen haben, kann in der Kaluza-Klein-Theorie der kompaktifizierte n- dimensionale Raum, ähnlich wie ein Ball, eine Symmetrie aufweisen. Dann übernehmen automatisch alle Schwingungen (oder Felder), die im n- dimensionalen Raum definiert sind, diese Symmetrien. Wenn es sich um die Symmetrie SU(n) handelt, dann müssen alle Schwingungen im Raum der SU(n)-Symmetrie gehorchen (so wie der Ton die Symmetrien der Form übernimmt). Auf diese Weise konnte die Kaluza-Klein-Theorie die Symmetrien des Standardmodells unterbringen. Doch auf diese Weise war auch zu erkennen, daß die Supergravitation »zu klein« war, um alle Teilchen der im Standardmodell entdeckten Symmetrien aufzunehmen. Damit ließ sich ausschließen, daß die Supergravitation eine realistische Theorie der Materie und Raumzeit war.
Doch als das Princeton String Quartet die
Weitere Kostenlose Bücher