Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]
Symmetrien des sechzehndimensionalen Raums untersuchte, stieß es auf eine ungeheuer große Symmetrie – E(8) x E(8) –, weitaus umfangreicher als jede GUT-Symmetrie, mit der man bislang einen Versuch gemacht hatte. Das war ein unerwarteter Vorteil, der bedeutete, daß alle Schwingungen des Strings die Symmetrie des sechzehndimensionalen Raums übernehmen konnten, was mehr als genug war, um der Symmetrie des Standardmodells Raum zu bieten.
Damit haben wir den mathematischen Ausdruck für das Hauptthema dieses Buchs – daß nämlich die physikalischen Gesetze in höheren Dimensionen einfacher werden. In diesem Falle bietet der sechsundzwanzigdimensionale Raum der gegen den Uhrzeigersinn verlaufenden Schwingungen des heterotischen String genügend Platz, um alle Symmetrien zu erklären, die in Einsteins Theorie und der Quantentheorie vorkommen. Zum erstenmal hat die reine Geometrie damit auf einfache Weise erklärt, warum die subatomare Welt unbedingt bestimmte Symmetrien aufweisen muß, die sich aus der Aufwicklung des höherdimensionalen Raums ergeben: Die Symmetrien des subatomaren Bereichs sind lediglich Überreste der Symmetrie des höherdimensionalen Raums.
Das heißt, daß die Schönheit und Symmetrie der Natur sich letztlich auf den höherdimensionalen Raum zurückführen läßt. Beispielsweise erzeugen Schneeflocken schöne, sechseckige Muster, die alle nicht ganz gleich sind. Diese Schneeflocken und Kristalle verdanken ihre Struktur wiederum der geometrischen Anordnung ihrer Moleküle. Hauptsächlich wird die Konfiguration durch die Elektronenschalen des Moleküls bestimmt, was uns wiederum zu den Drehsymmetrien der Quantentheorie zurückführt – O(3). Alle Symmetrien des niederenergetischen Universums, die wir in chemischen Elementen vorfinden, beruhen auf den Symmetrien des Standardmodells, die sich ihrerseits aus der Kompaktifizierung des heterotischen Strings ableiten lassen.
Zusammenfassend läßt sich feststellen, daß die Symmetrien, die wir in unserer alltäglichen Welt erblicken, von Regenbogen über Blüten bis zu Kristallen, letztlich als fragmentarische Manifestationen der ursprünglichen zehndimensionalen Theorie verstanden werden können. Riemann und Einstein hatten gehofft, geometrisch zu erklären, warum Kräfte die Bewegung und Beschaffenheit der Materie bestimmen können. Doch ihnen fehlte ein entscheidendes Element, um die Beziehung zwischen Holz und Marmor nachzuweisen. Höchstwahrscheinlich ist dieses fehlende Bindeglied die Superstringtheorie. Die zehndimensionale Stringtheorie zeigt uns, daß die Geometrie letztlich sowohl für die Kräfte als auch die Struktur der Materie verantwortlich sein könnte.
Eine physikalische Theorie des 21. Jahrhunderts
Betrachten wir die enorme Leistungsfähigkeit ihrer Symmetrien, so kann uns nicht überraschen, daß sich die Superstringtheorie grundsätzlich von allen anderen Erscheinungsformen der Physik unterscheidet. Und tatsächlich verdanken wir ihre Entdeckung weitgehend dem Zufall. Viele Physiker sind der Auffassung, daß die Theorie ohne diesen Zufall erst im 21. Jahrhundert entdeckt worden wäre. Das liegt daran, daß sie entschieden mit allen Vorstellungen bricht, die die Physik dieses Jahrhunderts bestimmt haben. Sie setzt nicht die Richtungen und Theorien fort, die unser Jahrhundert beschäftigt haben, sondern schlägt einen Sonderweg ein.
Im Gegensatz dazu hatte die allgemeine Relativitätstheorie eine »normale« und logische Entwicklung. Zunächst hat Einstein das Äquivalenzprinzip postuliert. Dann brachte er dieses physikalische Prinzip in das mathematische System einer Feldtheorie der Gravitation, die sich auf die Faradayschen Felder und den Riemannschen Maßtensor stützte. Später kamen die »klassischen Lösungen«, etwa das Schwarze Loch und der Urknall. Das bislang letzte Stadium sind die gegenwärtigen Versuche, eine Quantentheorie der Gravitation zu formulieren. Damit hat die allgemeine Relativitätstheorie eine logische Schrittfolge vom physikalischen Grundprinzip bis zur Quantentheorie durchlaufen:
Geometrie ĺ Feldtheorie ĺ klassische Theorie ĺ Quantentheorie
Im Gegensatz dazu hat sich die Superstringtheorie seit ihrer zufälligen Entdeckung im Jahre 1968 rückwärts entwickelt. Deshalb wirkt die Superstringtheorie auf die meisten Physiker auch so merkwürdig und unvertraut. Wir suchen immer noch nach dem physikalischen Grundprinzip, dem Gegenstück zu Einsteins
Weitere Kostenlose Bücher