Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]
heute im Rahmen des Stringkonzepts von Nambu ohne Schwierigkeiten verstehen. Wenn beispielsweise eine Hummel durch die Luft fliegt, kann man ihren Weg durch eine Schlangenlinie wiedergeben. Wenn ein Stück String sich wedelnd durch die Luft bewegt, läßt sich sein Weg mit einer imaginären zweidimensionalen Fläche vergleichen. Wandert ein geschlossener String durch den Raum, so ähnelt sein Weg einer Röhre.
Strings wechselwirken, indem sie sich in kleinere Strings aufteilen und indem sie sich mit anderen Strings verbinden. Bei ihren Bewegungen beschreiben diese wechselwirkenden Strings die in Abbildung 7.1 gezeigten Konfigurationen. Wie zu erkennen, kommen zwei Röhren von links, wobei sich eine Röhre aufspaltet, tauschen die Mittelröhre aus und entfernen sich. So wechselwirken Röhren. Natürlich ist das Diagramm eine Abkürzung für einen sehr komplizierten mathematischen Ausdruck. Wenn wir den numerischen Ausdruck berechnen, der diesen Diagrammen entspricht, gelangen wir wieder zur Eulerschen Beta-Funktion.
In ihrer Stringversion ist der entscheidende Kunstgriff von Kikkawa, Sakita und Virasoro (KSV) die Aufsummierung aller möglichen Diagramme für den Zusammenstoß und Zerfall von Strings. Natürlich gibt es eine unendliche Zahl solcher Diagramme. Nun gehört die Aufsummierung einer unendlichen Zahl von »Schleifendiagrammen«, wobei jedes Dia-
Abbildung 7.1. In der Stringtheorie wird die Gravitationskraft durch den Aus- tausch geschlossener Strings dargestellt, die röhrenförmige Wege in der Raumzeit zurücklegen. Selbst wenn wir eine unendliche Reihe von Diagrammen mit einer großen Zahl von Löchern aufsummieren, tauchen niemals Unendlichkeiten auf, so daß wir eine endliche Theorie der Quantengravitation erhalten.
gramm der endgültigen Lösung näher kommt – die sogenannte Störungsrechnung –, zu den wichtigsten Werkzeugen in der Ausrüstung jedes Quantenphysikers. (Die Symmetrie dieser Stringdiagramme ist von einer Schönheit, wie man sie in der Physik noch nicht erlebt hat; wir bezeichnen sie als konforme Symmetrie in zwei Dimensionen. Dank der konformen Symmetrie können wir die Röhren und Flächen behandeln, als wären sie aus Gummi: Wir können diese Diagramme ziehen, strecken, beugen und schrumpfen lassen. Und trotzdem erlaubt uns die konforme Symmetrie den Beweis, daß die mathematischen Ausdrücke sich nicht verändern.)
Nach KSV entspricht die Gesamtsumme aller dieser Schleifendiagramme der mathematischen Formel, die erklärt, wie subatomare Teilchen wechselwirken. Allerdings basierte das KSV-Programm auf einer Reihe unbewiesener Vermutungen. Jemand mußte diese Schleifen explizit konstruieren, oder die Vermutungen waren nutzlos.
Fasziniert von dem Programm, das KSV entwarf, beschloß ich, mein Glück zu versuchen und das Problem zu lösen. Was damals allerdings ein bißchen schwierig war, weil ich gleichzeitig Maschinengewehrkugeln ausweichen mußte.
Ausbildungscamp
An die Zeit, als das KSV-Papier 1969 erschien, habe ich noch eine deutliche Erinnerung. KSV entwarf eher ein Programm für die künftige Arbeit, als exakte Einzelheiten zu liefern. Deshalb beschloß ich, alle Schleifen, die möglich sind, explizit zu berechnen und so das KSV-Programm zu vollenden.
Die Zeit damals ist auch schwer zu vergessen. In Übersee tobte ein schrecklicher Krieg, und alle Universitäten, von der Kent State University bis zur Sorbonne, befanden sich in Aufruhr. Ein Jahr zuvor hatte ich an der Havard University mein Examen bestanden; damals hatte Präsident Lyndon B. Johnson die Wehrdienstzurückstellungen für graduierte Studenten aufgehoben und in den Postgraduierten-Kollegs des ganzen Landes Panik ausgelöst. Auf den Campus brach Chaos aus. Meine Freunde gaben das College auf, um an Highschools zu unterrichten, oder sie packten ihre Sachen, um nach Kanada zu fliehen. Manchmal versuchten sie auch, ihre Gesundheit zu ruinieren, um bei der Musterung durchzufallen.
So wurden hoffnungsvolle Karrieren zerstört. Einer meiner besten Freunde vom physikalischen Fachbereich des Massachusetts Institute of Technology schwor, er werde lieber ins Gefängnis gehen, als in Vietnam zu kämpfen. Dann bat er uns, ihm Kopien aus der Zeitschrift Physical Review in die Zelle zu schicken, damit er die Entwicklungen des VenezianoModells weiterverfolgen könne. Und die Freunde, die, um nicht in den Krieg zu müssen, das College aufgaben und an Highschools unterrichteten, brachen
Weitere Kostenlose Bücher