Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
them by allowing ions to pass through cell membranes. In thisway, shining light on these organisms can trigger certain chemical reactions. Armed with these dyes and light-sensitive chemicals, these scientists have been able for the first time to tease apart neural circuits governing specific behaviors.
So although comedians like to poke fun at these scientists for trying to create Frankenstein fruit flies controlled by the push of a button, the reality is that scientists are, for the first time in history, tracing the specific neural pathways of the brain that control specific behaviors.
MODELING THE BRAIN
Optogenetics is a first, modest step. The next step is to actually model the entire brain, using the latest in technology. There are at least two ways to solve this colossal problem, which will take many decades of hard work. The first is by using supercomputers to simulate the behavior of billions of neurons, each one connected to thousands of other neurons. The other way is to actually locate every neuron in the brain.
The key to the first approach, simulating the brain, is simple: raw computer power. The bigger the computer, the better. Brute force, and inelegant theories, may be the key to cracking this gigantic problem. And the computer that might accomplish this herculean task is called Blue Gene, one of the most powerful computers on earth, built by IBM.
I had a chance to visit this monster computer when I toured the Lawrence Livermore National Laboratory in California, where they design hydrogen warheads for the Pentagon. It is America’s premier top-secret weapons laboratory, a sprawling, 790-acre complex in the middle of farm country, budgeted at $1.2 billion per year and employing 6,800 people. This is the heart of the U.S. nuclear weapons establishment. I had to pass through many layers of security to see it, since this is one of the most sensitive weapons laboratories on earth.
Finally, after passing a series of checkpoints, I gained entrance to the building housing IBM’s Blue Gene computer, which is capable of computing at the blinding speed of 500 trillion operations per second. Blue Gene is a remarkable sight. It is huge, occupying about a quarter acre, and consists of row after row of jet-black steel cabinets, each one about 8 feet tall and 15 feet long.
When I walked among these cabinets, it was quite an experience. Unlike Hollywood science fiction movies, where the computers have lots of blinking lights, spinning disks, and bolts of electricity crackling through the air, these cabinets are totally quiet, with only a few tiny lights blinking. You realize that the computer is performing trillions of complex calculations, but you hear nothing and see nothing as it works.
What I was interested in was the fact that Blue Gene was simulating the thinking process of a mouse brain, which has about 2 million neurons (compared to the 100 billion neurons that we have). Simulating the thinking process of a mouse brain is harder than you think, because each neuron is connected to many other neurons, making a dense web of neurons. But while I was walking among rack after rack of consoles making up Blue Gene, I could not help but be amazed that this astounding computer power could simulate only the brain of a mouse, and then only for a few seconds. (This does not mean that Blue Gene can simulate the behavior of a mouse. At present, scientists can barely simulate the behavior of a cockroach. Rather, this means that Blue Gene can simulate the firing of neurons found in a mouse, not its behavior.)
In fact, several groups have focused on simulating the brain of a mouse. One ambitious attempt is the Blue Brain Project of Henry Markram of the École Polytechnique Fédérale de Lausanne, in Switzerland. He began in 2005, when he was able to obtain a small version of Blue Gene, with only 16,000 processors, but within a year he was successful in modeling the rat’s neocortical column, part of the neocortex, which contains 10,000 neurons and 100 million connections. That was a landmark study, because it meant that it was biologically possible to completely analyze the structure of an important component of the brain, neuron for neuron. (The mouse brain consists of millions of these columns, repeated over and over again. Thus, by modeling one of these columns, one can begin to understand how the mouse brain works.)
In 2009, Markram said optimistically, “ It is not impossible to build a human brain and we
Weitere Kostenlose Bücher