Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
can do it in ten years. If we build it correctly, it should speak and have an intelligence and behave very much as a human does.” He cautions, however, that it would take a supercomputer 20,000 times more powerful than present supercomputers, with a memory storage 500 times the entire size of the current Internet, to achieve this.
So what is the roadblock preventing this colossal goal? To him, it’s simple: money.
Since the basic science is known, he feels that he can succeed by simply throwing money at the problem. He says, “ It’s not a question of years, it’s one of dollars. … It’s a matter of if society wants this. If they want it in ten years, they’ll have it in ten years. If they want it in a thousand years, we can wait.”
But a rival group is also tackling this problem, assembling the greatest computational firepower in history. This group is using the most advanced version of Blue Gene, called Dawn, also based in Livermore. Dawn is truly an awesome sight, with 147,456 processors with 150,000 gigabytes of memory. It is roughly 100,000 times more powerful than the computer sitting on your desk. The group, led by Dharmendra Modha, has scored a number of successes. In 2006, it was able to simulate 40 percent of a mouse’s brain. In 2007, it could simulate 100 percent of a rat’s brain (which contains 55 million neurons, much more than the mouse brain).
And in 2009, the group broke yet another world record. It succeeded in simulating 1 percent of the human cerebral cortex, or roughly the cerebral cortex of a cat, containing 1.6 billion neurons with 9 trillion connections. However, the simulation was slow, about 1/600th the speed of the human brain. (If it simulated only a billion neurons, it went much faster, about 1/83rd the speed of the human brain.)
“ This is a Hubble Telescope of the mind, a linear accelerator of the brain,” says Modha proudly, remarking on the mammoth scale of this achievement. Since the brain has 100 billion neurons, these scientists can now see the light at the end of the tunnel. They feel that a full simulation of the human brain is within sight. “This is not just possible, it’s inevitable. This will happen,” says Modha.
There are serious problems, however, with modeling the entire human brain, especially power and heat. The Dawn computer devours 1 million watts of power and generates so much heat it needs 6,675 tons of air-conditioning equipment, which blows 2.7 million cubic feet of chilled air every minute. To model the human brain, you would have to scale this up by a factor of 1,000.
This is a truly monumental task. The power consumption of this hypothetical supercomputer would be a billion watts, or the output of an entirenuclear power plant. You could light up an entire city with the energy consumed by this supercomputer. To cool it, you would need to divert an entire river and channel the water through the computer. And the computer itself would occupy many city blocks.
Amazingly, the human brain, by contrast, uses just 20 watts. The heat generated by the human brain is hardly noticeable, yet it easily outperforms our greatest supercomputer. Furthermore, the human brain is the most complex object that Mother Nature has produced in this section of the galaxy. Since we see no evidence of other intelligent life-forms in our solar system, this means that you have to go out to at least 24 trillion miles, the distance to the nearest star, and even beyond to find an object as complex as the one sitting inside your skull.
We might be able to reverse engineer the brain within ten years, but only if we had a massive Manhattan Project–style crash program and dumped billions of dollars into it. However, this is not very likely to happen any time soon, given the current economic climate. Crash programs like the Human Genome Project, which cost nearly $3 billion, were supported by the U.S. government because of their obvious health and scientific benefits. However, the benefits of reverse engineering the brain are less urgent, and hence will take much longer. More realistically, we will approach this goal in smaller steps, and it may take decades to fully accomplish this historic feat.
So computer simulating the brain may take us to midcentury. And even then, it will take many decades to sort through the mountains of data pouring in from this massive project and match it to the human brain. We will be drowning in data without the means to meaningfully sort
Weitere Kostenlose Bücher