Bücher online kostenlos Kostenlos Online Lesen
Self Comes to Mind

Self Comes to Mind

Titel: Self Comes to Mind Kostenlos Bücher Online Lesen
Autoren: Antonio Damasio
Vom Netzwerk:
to work, somehow, somewhere. Once all of this happens and given the added gift of self, we know that we are in the middle of recalling something.
    The ability to maneuver the complex world around us depends on this capacity to learn and recall—we recognize people and places only because we establish records of their likeness and bring some part of those records back at the right time. Our ability to imagine possible events also depends on learning and recall and is the foundation of reasoning and navigating the future and, more generally, for creating novel solutions for a problem. If we are to understand how all of this happens, we need to discover in the brain the secrets of the somehow and locate the somewhere. This is one of the intricate problems in contemporary neuroscience.
    The approach to the problem of learning and recall depends on the level of operation we select to study. We have a growing understanding of what it takes, at the level of neurons and small circuits, for the brain to learn. For practical purposes, we know how synapses learn, and we even know, at the microcircuit level, some of the molecules and gene-expression mechanisms involved in learning. 1 We also know that specific parts of the brain play a main role in learning different kinds of information—objects such as faces, places, or words, on the one hand, and movements, on the other. 2 But many questions remain before the somehow and somewhere mechanisms can be fully elucidated. The purpose here is to outline a brain architecture that can further clarify the problem.
The Nature of Memory Records
     
    The brain makes records of entities, the way they look and sound and act, and preserves them for later recall. It does the same for events. Usually the brain is assumed to be a passive recording medium, like film, onto which the characteristics of an object, as analyzed by sensory detectors, can be mapped faithfully. If the eye is the passive, innocent camera, the brain is the passive, virgin celluloid. This is pure fiction.
    The organism (the body and its brain) interacts with objects, and the brain reacts to the interaction. Rather than making a record of an entity’s structure, the brain actually records the multiple consequences of the organism’s interactions with the entity . What we memorize of our encounter with a given object is not just its visual structure as mapped in optical images of the retina. The following are also needed: first, the sensorimotor patterns associated with viewing the object (such as eye and neck movements or whole-body movement, if applicable); second, the sensorimotor pattern associated with touching and manipulating the object (if applicable); third, the sensorimotor pattern resulting from the evocation of previously acquired memories pertinent to the object; fourth, the sensorimotor patterns related to the triggering of emotions and feelings relative to the object.
    What we normally refer to as the memory of an object is the composite memory of the sensory and motor activities related to the interaction between the organism and the object during a certain period of time. The range of the sensorimotor activities varies with the value of the object and the circumstances, as does the retention of such activities. Our memories of certain objects are governed by our past knowledge of comparable objects or of situations similar to the one we are experiencing. Our memories are prejudiced , in the full sense of the term, by our past history and beliefs. Perfectly faithful memory is a myth, applicable only to trivial objects. The notion that the brain ever holds anything like an isolated “memory of the object” seems untenable. The brain holds a memory of what went on during an interaction, and the interaction importantly includes our own past, and often the past of our biological species and of our culture.
    The fact that we perceive by engagement, rather than by passive receptivity, is the secret of the “Proustian effect” in memory, the reason why we often recall contexts rather than just isolated things. But it is also relevant to understanding how consciousness comes about.
Dispositions Came First, Maps Followed
     
    The hallmark of brain maps is the relatively transparent connection between the thing represented—shape, movement, color, sound—and the map’s contents. The pattern in the map has some patent correspondence to the thing it maps. In theory, if an intelligent observer could tumble onto

Weitere Kostenlose Bücher