Bücher online kostenlos Kostenlos Online Lesen
Aristoteles: Grundwissen Philosophie

Aristoteles: Grundwissen Philosophie

Titel: Aristoteles: Grundwissen Philosophie Kostenlos Bücher Online Lesen
Autoren: Wolfgang Detel
Vom Netzwerk:
die Angabe der Essenz – im Wesentlichen auf (c), (g) und (e) reduzierbar: Die Essenz eines Dinges anzugeben heißt, Merkmale anzugeben, die insgesamt ein Proprium des Dinges sind, seine Gattung und spezifische Differenz enthalten und explanatorisch fruchtbar für weitere Merkmale des Dinges sind.
    [14] Definitionen sind nach der
Topik
also nicht Explikationen von Wortbedeutungen, sondern wahre universelle Sätze über die Welt, die ein Ding identifizieren und erklären können.
    Allgemein wird das methodisch angeleitete dialektische Gespräch nach Aristoteles durch zwei neutrale Bedingungen bestimmt: durch das Konsensprinzip und das Nicht-Widerspruchsprinzip. Der Proponent darf demnach nur fortfahren, wenn der Opponent seinen Thesen zustimmt (Konsens), und er muss einräumen, dass seine These unhaltbar wird, wenn der Opponent ihn zwingen kann, im Rahmen des Begründungsversuchs mindestens einmal einen Satz und dessen Negation zu behaupten (Widerspruch). Wie könnte man die beiden wichtigsten Aspekte einer fairen Diskussion besser charakterisieren?
    In der
Topik
arbeitet Aristoteles, wie wir gesehen haben, u. a. mit der Unterscheidung zwischen wissenschaftlichen, dialektischen und eristischen Schlüssen. Bei der Kennzeichnung der eristischen Schlüsse deutet er an, dass diese Schlüsse nur scheinbar gültige Schlüsse sind. Was ist genauer ein gültiger Schluss? Diese nahe liegende und zugleich schwierige Frage hat sich Aristoteles offensichtlich in einer Reflexion auf seine
Topik
gestellt. Das können wir aus den Anfangskapiteln des ersten Buches seiner
Ersten Analytik
erschließen, die allein ihn schon für immer unsterblich gemacht hätten (APr. I 1–7). Diese Kapitel enthalten nämlich das Herzstück seiner Syllogistik und damit die Erfindung der formalen Logik, die in der späteren Antike und im Mittelalter auf raffinierte Weise weiterentwickelt wurde.
    Aristoteles selbst nennt seine Syllogistik »Analytik« (Metaph. VII 12, 1037b 9, NE VI 3, 1139b 27). Hintergrund dieser Bezeichnung ist die Idee, dass befriedigendes Wissen oder eine gute Theorie vor allem die Kenntnis der wichtigsten Elemente des jeweiligen Gegenstandsbereichs umfasst. Die methodische Zerlegung eines komplexen Gegenstandsbereichs in einfachere oder einfachste Bestandteile heißt bei Aristoteles »Analyse« (Metaph. IX 10, An. III 6; NE III 3, 1112b 20–24), und [15] die Zusammensetzung der einfachsten Bestandteile zum gegebenen komplexen Gegenstandsbereich wurde später »Synthese« genannt. Das analytisch-synthetische Verfahren blieb seit Aristoteles für rund zweitausend Jahre das Leitbild für die Etablierung einer wissenschaftlichen Theorie. Die raffinierte Ausgestaltung dieses Leitbildes in einer wissenschaftlichen Analytik führte bei Aristoteles zu der historisch ersten explizit formulierten formalen Logik und Wissenschaftstheorie. 5
    Die methodische Analyse, wie Aristoteles sie versteht, kann auf verschiedene Gegenstandsbereiche angewendet werden, etwa auf Mittel-Zweck-Relationen in der Ethik oder auf geometrische Figuren. Wenn wir beispielsweise genauer erklären wollen, warum Sokrates junge Leute einer gezielten Befragung unterzog, damit sie über ihr Leben nachzudenken beginnen, dann könnte eine Antwort sein, dass Sokrates die gezielte Befragung dazu benutzte, um die Auffassungen der jungen Leute einem Konsistenztest zu unterziehen und sie auf Widersprüche in ihren Meinungen aufmerksam zu machen, und dass er dies wiederum als Mittel für eine Hinführung zur Selbstreflexion benutzte. Auf diese Weise können wir die ursprüngliche – latent komplexe – Mittel-Zweck-Relation in zwei einfachere Mittel-Zweck-Relationen auflösen und damit besser durchschauen. Und eine Erklärung der ursprünglichen Mittel-Zweck-Relation bestünde im Wesentlichen darin, sie aus den einfacheren Mittel-Zweck-Relationen wieder zusammenzusetzen (NE III 3). Oder wenn wir auf eine geometrische Figur schauen, etwa auf das Dreieck im Halbkreis, dann brauchen wir nur ein oder zwei geeignete weitere Hilfslinien zu ziehen, die das gegebene Diagramm feiner analysieren, um den Beweis für den Thales-Satz zu erkennen, der behauptet, dass alle Dreiecke im Halbkreis rechtwinklig sind (Metaph. IX 9, 1051a). Allgemein ist das Beweisverfahren der euklidischen Geometrie ein paradigmatischer Fall des analytisch-synthetischen Verfahrens. Denn Kreis und Gerade galten als einfachste Elemente des geometrischen Kontinuums, und deshalb mussten euklidische Beweise mit Zirkel

Weitere Kostenlose Bücher