Die Welt als Wille und Vorstellung (German Edition)
Eleaten zuerst hatten den Unterschied, ja öfteren Widerstreit entdeckt zwischen dem Angeschauten, phainomenon , und dem Gedachten, nooumenon 25 , und hatten ihn zu ihren Philosophemen, auch zu Sophismen, mannigfaltig benutzt. Ihnen folgten später Megariker, Dialektiker, Sophisten, Neu-Akademiker und Skeptiker; diese machten aufmerksam auf den Schein, d.i. auf die Täuschung der Sinne, oder vielmehr des ihre Data zur Anschauung umwandelnden Verstandes, welche uns oft Dinge sehn läßt, denen die Vernunft mit Sicherheit die Realität abspricht, z.B. den gebrochenen Stab im Wasser u. dgl. Man erkannte, daß der sinnlichen Anschauung nicht unbedingt zu trauen sei, und schloß voreilig, daß allein das vernünftige logische Denken Wahrheit begründe; obgleich Plato (im Parmenides), die Megariker, Pyrrhon und die Neu-Akademiker durch Beispiele (in der Art, wie später Sextus Empirikus) zeigten, wie auch andererseits Schlüsse und Begriffe irre führten, ja Paralogismen und Sophismen hervorbrächten, die viel leichter entstehn und viel schwerer zu lösen sind, als der Schein in der sinnlichen Anschauung. Inzwischen behielt jener also im Gegensatz des Empirismus entstandene Rationalismus die Oberhand, und Ihm gemäß bearbeitete Eukleides die Mathematik, also auf die anschauliche Evidenz ( phainomenon ) bloß die Axiome nachgedrungen stützend, alles Uebrige aber auf Schlüsse ( nooumenon ). Seine Methode blieb herrschend alle Jahrhunderte hindurch, und mußte es bleiben, so lange nicht die reine Anschauung a priori von der empirischen unterschieden wurde. Zwar scheint schon des Eukleides Kommentator Proklos jenen Unterschied völlig erkannt zu haben, wie die Stelle jenes Kommentators zeigt, welche Kepler in seinem Buch de harmonia mundi lateinisch übersetzt hat: allein Proklos legte nicht genug Gewicht auf die Sache, stellte sie zu isolirt auf, blieb unbeachtet und drang nicht durch. Erst zwei tausend Jahre später daher, wird die Lehre Kants, welche so große Veränderungen in allem Wissen, Denken und Treiben der Europäischen Völker hervorzubringen bestimmt ist, auch in der Mathematik eine solche veranlassen. Denn erst nachdem wir von diesem großen Geiste gelernt haben, daß die Anschauungen des Raumes und der Zeit von der empirischen gänzlich verschieden, von allem Eindruck auf die Sinne gänzlich unabhängig, diesen bedingend, nicht durch ihn bedingt, d.h. a priori sind, und daher dem Sinnentruge gar nicht offen stehn, erst jetzt können wir einsehn, daß des Eukleides logische Behandlungsart der Mathematik eine unnütze Vorsicht, eine Krücke für gesunde Beine ist, daß sie einem Wanderer gleicht, der Nachts einen hellen festen Weg für ein Wasser haltend, sich hütet ihn zu betreten, und stets daneben auf holprigtem Boden geht, zufrieden von Strecke zu Strecke an das vermeinte Wasser zu stoßen. Erst jetzt können wir mit Sicherheit behaupten, daß, was bei der Anschauung einer Figur sich uns als nothwendig ankündigt, nicht aus der auf dem Papier vielleicht sehr mangelhaft gezeichneten Figur kommt, auch nicht aus dem abstrakten Begriff, den wir dabei denken, sondern unmittelbar aus der uns a priori bewußten Form aller Erkenntniß: diese ist überall der Satz vom Grunde: hier ist sie, als Form der Anschauung, d.i. Raum, Satz vom Grunde des Seyns: dessen Evidenz und Gültigkeit aber ist eben so groß und unmittelbar, wie die vom Satze des Erkenntnißgrundes, d.i. die logische Gewißheit. Wir brauchen und dürfen also nicht, um bloß der letztern zu trauen, das eigenthümliche Gebiet der Mathematik verlassen, um sie auf einem ihr ganz fremden, dem der Begriffe, zu beglaubigen. Halten wir uns auf jenem der Mathematik eigenthümlichen Boden, so erlangen wir den großen Vortheil, daß in ihr nunmehr das Wissen, daß etwas so sei. Eines ist mit dem, warum es so sei; statt daß die Eukleidische Methode beide gänzlich trennt und bloß das erstere, nicht das letztere erkennen läßt. Aristoteles aber sagt ganz vortrefflich, in den Analyt. post. I, 27: » Akribestera d epistêmê epistêmês kai protera, hête tou hoti kai tou dioti hê autê, alla mê chôris tou hoti, tês tou dioti .« (Subtilior autem et praestantior ea est scientia, quâ quod aliquid sit, et cur sit una simulque intelligimus, non separatim quod , et cur sit.) Sind wir doch in der Physik nur dann befriedigt, wann die Erkenntniß, daß etwas so sei, vereint ist mit der, warum es so ist: daß das Quecksilber in der Torricellianischen Röhre 28 Zoll
Weitere Kostenlose Bücher