Eine kurze Geschichte der Zeit (German Edition)
Temperatur verstärkt aber auch den Druck des Gases, bis er ebenso groß ist wie die Gravitation. Daraufhin zieht sich das Gas nicht mehr zusammen. Es besteht eine gewisse Ähnlichkeit mit einem Luftballon, bei dem sich der Luftdruck im Innern, der bestrebt ist, den Ballon auszudehnen, und die Spannung des Gummis, die bestrebt ist, den Ballon zusammenzuziehen, im Gleichgewicht befinden. Sterne bleiben in diesem Zustand – der Balance zwischen der Schwerkraft und der bei den Kernreaktionen frei werdenden Hitze – lange Zeit stabil. Schließlich gehen dem Stern jedoch der Wasserstoff und andere Kernbrennstoffe aus. Paradoxerweise verbraucht ein Stern um so rascher seinen Brennstoff, je mehr ihm davon anfangs zur Verfügung stand. Denn je mehr Masse ein Stern hat, desto heißer muß er sein, um seine Gravitationskraft auszugleichen, und je heißer er ist, desto rascher ist sein Brennstoffvorrat erschöpft. Unsere Sonne hat vermutlich noch Brennstoff für etwa fünf Milliarden Jahre. Doch massereichere Sterne können ihren Brennstoff schon nach hundert Millionen Jahren verbraucht haben, einem Zeitraum, der viel kürzer ist als die Existenz des Universums. Wenn einem Stern der Brennstoff ausgeht, fängt er an, abzukühlen und sich somit zusammenzuziehen. Was dann mit ihm geschehen könnte, begann man erst Ende der zwanziger Jahre zu verstehen.
1928 reiste der indische Student Subrahmanyan Chandrasekhar nach England, um in Cambridge bei dem britischen Astronomen Sir Arthur Eddington zu studieren, einem Experten auf dem Gebiet der Allgemeinen Relativitätstheorie. (Es heißt, Anfang der zwanziger Jahre habe ein Journalist Eddington berichtet, er habe gehört, daß es auf der Welt nur drei Leute gebe, die die Allgemeine Relativitätstheorie verstanden hätten. Eddington schwieg eine Weile und sagte dann: «Ich überlege, wer der dritte sein könnte.») Auf der Reise von Indien nach England errechnete Chandrasekhar, bis zu welcher Größe sich ein Stern auch dann noch gegen die eigene Schwerkraft behaupten kann, wenn er seinen ganzen Brennstoff verbraucht hat. Dabei ging er von folgendem Grundgedanken aus: Wenn der Stern kleiner wird, rücken die Materieteilchen sehr nahe aneinander und müssen deshalb nach dem Paulischen Ausschließungsprinzip sehr unterschiedliche Geschwindigkeiten haben. Dies hat zur Folge, daß sie sich wieder voneinander fortbewegen – der Stern tendiert dazu, sich auszudehnen. So kann ein Stern einen konstanten Radius bewahren, wenn sich die Anziehung infolge der Gravitation und die Abstoßung infolge des Ausschließungsprinzips die Waage halten, genauso wie sich zu einem früheren Zeitpunkt Gravitation und Wärmebewegung in Balance befanden.
Chandrasekhar stellte jedoch fest, daß der Abstoßungskraft durch das Ausschließungsprinzip eine Grenze gesetzt ist. Die Relativitätstheorie grenzt den maximalen Geschwindigkeitsunterschied der Materieteilchen im Stern auf die Lichtgeschwindigkeit ein. Verdichtete sich der Stern also hinreichend, so würde die durch das Ausschließungsprinzip bewirkte Abstoßung geringer sein als die Anziehungskraft der Gravitation. Nach Chandrasekhars Berechnungen wäre ein kalter Stern von mehr als etwa der anderthalbfachen Sonnenmasse nicht in der Lage, sich gegen die eigene Schwerkraft zu behaupten. (Heute bezeichnet man diese Masse als die Chandrasekharsche Grenze.) Eine ähnliche Entdeckung machte ungefähr zur gleichen Zeit auch der russische Physiker Lew Dawidowitsch Landau.
Daraus ergaben sich weitreichende Konsequenzen für das weitere Schicksal von Sternen mit großer Masse. Wenn die Masse eines Sterns unter dem Chandrasekharschen Grenzwert bleibt, kann seine Kontraktion zum Stillstand kommen und er selbst einen Endzustand als «Weißer Zwerg» mit einem Radius von ein paar tausend Kilometern und einer Dichte von Hunderten von Tonnen pro Kubikzentimeter erreichen. Der Weiße Zwerg gewinnt seine Stabilität aus der auf dem Ausschließungsprinzip beruhenden Abstoßung zwischen den Elektronen seiner Materie. Wir können eine große Zahl solcher Weißen Zwerge beobachten. Einer der ersten, die entdeckt wurden, ist ein Stern, der um den Sirius kreist, den hellsten Stern am Nachthimmel.
Landau hat gezeigt, daß Sterne mit einer Grenzmasse, die ebenfalls das Ein- bis Zweifache der Sonnenmasse beträgt, auch einen anderen Endzustand erreichen können, der noch erheblich kleiner als der eines Weißen Zwerges ist. Auch diese Sterne würden ihre Stabilität aus dem
Weitere Kostenlose Bücher