Bücher online kostenlos Kostenlos Online Lesen
Eine kurze Geschichte der Zeit (German Edition)

Eine kurze Geschichte der Zeit (German Edition)

Titel: Eine kurze Geschichte der Zeit (German Edition) Kostenlos Bücher Online Lesen
Autoren: Stephen Hawking
Vom Netzwerk:
Ausschließungsprinzip gewinnen, aber aus der Abstoßung zwischen den Neutronen und Protonen, nicht zwischen den Elektronen. Deshalb nannte man sie «Neutronensterne». Sie müßten, so die damalige Hypothese, einen Radius von lediglich fünfzehn Kilometern und eine Dichte von Hunderten von Millionen Tonnen pro Kubikzentimeter haben. Zur Zeit dieser Vorhersage gab es noch keine Möglichkeit, Neutronensterne zu beobachten. Sie wurden erst sehr viel später entdeckt.
    Sterne dagegen, deren Masse über dem Chandrasekharschen Grenzwert liegt, stehen vor einem großen Problem, wenn ihnen der Brennstoff ausgegangen ist. In einigen Fällen explodieren sie, oder es gelingt ihnen, genügend Materie loszuwerden, um die Masse unter den Grenzwert zu drücken und einen Gravitationskollaps katastrophalen Ausmaßes zu vermeiden. Aber es ist kaum vorstellbar, daß dies immer geschieht, ganz gleich, wie groß der Stern ist. Woher sollte er wissen, daß er abnehmen muß? Und selbst wenn es jedem Stern gelänge, sich von genügend Masse zu befreien, um den Kollaps zu vermeiden – was würde geschehen, wenn man einem Weißen Zwerg oder einem Neutronenstern so viel Masse hinzufügte, daß der Grenzwert überschritten wäre? Würde er zu unendlicher Dichte zusammenstürzen? Eddington war schockiert über die Konsequenzen, die sich aus diesen Überlegungen ergaben, und weigerte sich, Chandrasekhars Schlußfolgerungen zu akzeptieren. Er hielt es schlicht für unmöglich, daß ein Stern zu einem Punkt schrumpfen könnte. Dieser Ansicht waren die meisten Wissenschaftler, auch Einstein, der in einem Artikel erklärte, Sterne könnten auf keinen Fall zur Größe Null kollabieren. Der Widerstand so vieler Fachleute, vor allem auch die Einwände seines einstigen Lehrers Eddington, einer Kapazität auf dem Gebiet des Sternaufbaus, bewogen Chandrasekhar, diese Forschungsrichtung aufzugeben und sich anderen astronomischen Problemen zuzuwenden, etwa der Bewegung von Sternenhaufen. Doch als er 1983 den Nobelpreis erhielt, galt diese Auszeichnung auch seiner frühen Arbeit über die Grenzmasse kalter Sterne.
    Chandrasekhar hatte gezeigt, daß Paulis Ausschließungsprinzip den Kollaps eines Sterns nicht aufzuhalten vermag, wenn seine Masse den Chandrasekharschen Grenzwert übersteigt, doch die Frage, was der Allgemeinen Relativitätstheorie zufolge mit einem solchen Stern geschehen würde, beantwortete 1939 der junge Amerikaner Robert Oppenheimer. Er kam jedoch zu dem Schluß, daß aus seinen Überlegungen nichts folgte, was mit den Teleskopen seiner Zeit hätte beobachtet werden können. Dann kam der Zweite Weltkrieg dazwischen; Oppenheimer war in dieser Zeit maßgeblich an einem Projekt zur Entwicklung der Atombombe beteiligt. Nach dem Krieg hatte man das Problem des Gravitationskollapses weitgehend vergessen. Die meisten Physiker befaßten sich nun mit der Erforschung des Geschehens auf der Ebene des Atoms und seines Kerns. Doch in den sechziger Jahren wurde das Interesse an den Fragen der Astronomie und Kosmologie neu belebt, weil die Anwendung moderner Techniken die Zahl und Reichweite astronomischer Beobachtungen erheblich vergrößerte. Nun entdeckte man auch Oppenheimers Arbeit wieder, und zahlreiche Wissenschaftler machten sich daran, sie weiterzuführen.
    Heute stellt sich uns Oppenheimers Arbeit wie folgt dar: Das Gravitationsfeld des Sterns lenkt die Lichtstrahlen in der Raumzeit von den Wegen ab, auf denen sie sich fortbewegen würden, wenn es den Stern nicht gäbe. Die Lichtkegel, die anzeigen, welchen Wegen in Raum und Zeit Lichtblitze folgen, die von ihren Spitzen ausgesendet werden, sind in der Nähe der Oberfläche eines Sterns leicht nach innen gekrümmt. Dies offenbart sich an der Krümmung des Lichts ferner Sterne, die während einer Sonnenfinsternis zu beobachten ist. Wenn sich der Stern zusammenzieht, wird das Gravitationsfeld an seiner Oberfläche stärker, und die Lichtkegel krümmen sich weiter nach innen. Dadurch wird es schwieriger für das Licht, dem Stern zu entkommen, und es erscheint einem in größerer Entfernung postierten Beobachter schwächer und röter. Wenn der schrumpfende Stern schließlich einen bestimmten kritischen Radius erreicht, wird das Gravitationsfeld an der Oberfläche so stark und die Krümmung der Lichtkegel nach innen so ausgeprägt, daß das Licht nicht mehr entweichen kann (Abb. 18). Nun kann sich nach der Relativitätstheorie nichts schneller fortbewegen als das Licht. Wenn somit Licht nicht

Weitere Kostenlose Bücher