Bücher online kostenlos Kostenlos Online Lesen
Kosmologie für Fußgänger

Kosmologie für Fußgänger

Titel: Kosmologie für Fußgänger Kostenlos Bücher Online Lesen
Autoren: H Lesch
Vom Netzwerk:
Sonnenscheibe erstrecken kann. Dann flammt urplötzlich eine gewaltige Eruption großer Helligkeit auf, ein Flare, der bis in die oberen Schichten der Sonne reichen kann. In wenigen Minuten breitet sich die Explosion entlang konzentrierter Magnetfelder aus und setzt dabei enorme Mengen gespeicherter magnetischer Energie frei, die die Temperatur von Gebieten mit einer Größe wie die Erde auf Millionen Grad hochtreibt. Derartige Ausbrüche sind stets begleitet von einer intensiven Strahlung im gesamten Bereich des elektromagnetischen Spektrums, also von harter Röntgenstrahlung bis hin zu den langen Radiowellen.
    Protuberanzen schließlich können sowohl klein als auch riesig ausfallen. Am Sonnenrand sind sie bei einer Sonnenfinsternis gut als lang gestreckte, wolkenartige Gebilde zu erkennen. Man unterscheidet so genannte stationäre und aufsteigende beziehungsweise eruptive Protuberanzen. Stationäre Protuberanzen halten sich oft monatelang, ohne ihre Gestalt wesentlich zu verändern. Dabei handelt es sich um relativ kühle Plasmafilamente, die auf einem Magnetfeldteppich in der Koronaatmosphäre der Sonne schweben. Derartige stationäre Plasmawolken können sich über Bereiche von 200 000 Kilometern ausdehnen und in Höhen von bis zu 100 000 Kilometer hinaufreichen. Gelegentlich werden die Protuberanzen jedoch ohne äußere Vorzeichen schlagartig auf Geschwindigkeiten von bis zu 600 Kilometern in der Sekunde beschleunigt. Solche eruptiven Protuberanzen steigen dann bis in Höhen von ein bis zwei Millionen Kilometern auf und fallen, den Magnetfeldlinien der Sonne folgend, in gewaltigen Bögen wieder auf diese zurück. Manchmal sind die beschleunigten Gasmassen so schnell, dass sie sogar das Schwerefeld der Sonne nicht mehr halten kann und sie in den interplanetarischen Raum hinausschießen.
    Ursache für all diese Erscheinungen sind die im Bereich der Sonnenflecken verwirbelten und komprimierten Magnetfelder. Dort erreicht die magnetische Feldstärke sehr hohe Werte. Kommen sich Gebiete antiparalleler Feldrichtung zu nahe, so kann es zu einem magnetischen Kurzschluss kommen, wobei gewaltige elektrische Ströme fließen. Diese wiederum heizen das leitende Plasma wie die Wendel einer Glühlampe auf. Dabei dehnt sich das Plasma schlagartig aus. Die Magnetfelder verhindern aber, dass es in alle Richtungen davonschießt, da sich geladene Teilchen ungehindert nur parallel zu den Feldlinien bewegen können. Somit bleiben die Plasmaströme in den magnetischen Röhren gefangen, die sich bogenförmig um die ganze Sonne spannen.
    Nach diesem langen Exkurs in die »magnetische Welt« der Sonne können wir endlich auch die Frage beantworten, warum es in der Chromosphäre und noch viel mehr in der Korona der Sonne immer heißer wird. Wir haben es ja gerade gesehen: Die elektrischen Ströme, die beim Zerfall der Magnetfelder entstehen, zum Teil auch die durch die Mikroflares freigesetzte Wärme, heizen die ionisierten Gase auf. Aber warum erreicht gerade in der Korona die Temperatur Werte von bis zu einigen Millionen Grad? Der eisige Weltraum, dessen Temperatur lediglich wenige Grad über dem absoluten Nullpunkt liegt, grenzt doch unmittelbar an die oberste atmosphärische Schicht der Sonne! Das ist wohl richtig. Aber ein Plasma kann Energie nur mittels Stoß- und Rekombinationsprozesse sowie in Gegenwart eines Magnetfeldes über Synchrotronprozesse abgeben. Damit die ersten beiden Prozesse ablaufen können, müssen sich die Teilchen sehr nahe kommen und zusammenstoßen. Aber genau das passiert im Gas der Korona nicht. Bei der außerordentlich geringen Dichte der Korona begegnen sich die Teilchen – die Protonen und die Elektronen – praktisch nie und können somit auch nicht miteinander in Wechselwirkung treten. Bleibt nur noch die Beschleunigung der Protonen und Elektronen in den Magnetfeldern, wobei die so genannte Synchrotronstrahlung entsteht, also energiereiche Photonen, welche die Korona ungehindert verlassen können. Aber das ist insgesamt ein zu geringer Energieverlust, um die Temperatur der Korona merklich abzusenken.
    Trotz dieser umfangreichen Palette an Sonnenaktivitäten sind wir noch nicht am Ende. Zusätzlich zu all diesen Ereignissen emittiert die Sonne noch einen steten Strom von Partikeln, den so genannten Sonnenwind. Hierbei handelt es sich um geladene Teilchen, vornehmlich Protonen und Elektronen, die von der Sonnenkorona abströmen und mit einer Geschwindigkeit von etwa 500 Kilometern in der Sekunde bis an

Weitere Kostenlose Bücher