Kosmologie für Fußgänger
werden, weil sich Kernfusions- und Strahlungstransportzone nicht durchmischen. Das könnte ausschließlich mittels Konvektion erfolgen, die aber findet nur im Außenbereich der Sonne statt. Sind also die zehn Prozent Wasserstoff aufgebraucht, ist das Spiel der Kerne zunächst beendet. Was dann passiert, werden wir noch sehen.
Der Konvektionszone schließt sich die so genannte Photosphäre an. Diese Schicht ist nur etwa 100 Kilometer dick und markiert den Rand der Sonne. Von der Photosphäre werden etwa 99 Prozent der gesamten Sonnenenergie abgestrahlt. Sie ist es, die die Sonne so hell leuchten lässt, als wären dort rund eine Million 100-Watt-Birnen pro Quadratmeter entflammt. Das Brodeln in der Konvektionszone dringt sogar bis an die Oberfläche der Photosphäre durch. Mit guten Fernrohren lassen sich die einzelnen, dicht an dicht liegenden, aufsteigenden Zellen direkt beobachten – ein Bild, das auch als Granulation bezeichnet wird. Die Ränder der einzelnen Granulen sind deutlich dunkler. Hier hat sich die Materie bereits so weit abgekühlt, dass sie wieder in die Tiefe abzusinken beginnt.
Oberhalb der Photosphäre erstreckt sich die Chromosphäre, die schließlich in die äußerste atmosphärische Schicht der Sonne, die Korona, übergeht, die bis zu mehreren Sonnenradien in den Weltraum hinausreicht. Chromosphäre und Korona sind normalerweise nicht sichtbar, da sie von der Leuchtkraft der Photosphäre völlig überstrahlt werden. Bei einer totalen Sonnenfinsternis ist das jedoch anders. Für kurze Zeit leuchtet jetzt die Chromosphäre als roter Ring auf, und die Korona erscheint als bläulich-weißer Strahlenkranz um die abgedeckte Sonnenscheibe. Die Dichte des Koronaplasmas ist außerordentlich gering, eine Million Kubikmeter Gas wiegen nur etwa zehn Gramm. Und was die Temperatur anbelangt, so werden dort Werte von mehreren Millionen Grad gemessen. Nun sagt uns aber die Physik, dass bei derart hohen Temperaturen ein Körper Röntgenstrahlen emittieren muss, es sich also um eine Strahlung handelt, die man gar nicht sehen kann. Und dennoch geraten bei einer Sonnenfinsternis die Beobachter insbesondere über den faszinierenden Anblick der Korona in Verzückung. Wieso sieht man sie trotzdem? Schuld daran sind hauptsächlich die Elektronen. An ihnen wird das von der Photosphäre ausgehende Licht in alle Richtungen gestreut und gelangt so in unser Auge. Die Korona borgt sich also gewissermaßen Licht von der Photosphäre, um sich selbst darstellen zu können.
Apropos Temperatur: Was diesen Faktor anbelangt, so tun sich in der Chromosphäre und der Korona merkwürdige Dinge. Während sich vom Kern der Sonne bis zur Photosphäre die Temperatur stetig verringert, steigt sie in der Chromosphäre wieder an. Das ist so ähnlich, als würde es über einer mäßig warmen Herdplatte immer heißer, je weiter man sich von ihr entfernt. Die Temperatur erhöht sich auf 10 000 bis 20 000 Grad in einer Höhe von etwa 12000 Kilometern über der Photosphäre. Aber damit noch nicht genug! Wie wir gerade gesehen haben, schnellt sie in der Korona sogar auf mehrere Millionen Grad hoch. Dieser enorme Temperaturanstieg ist eine Folge des ausgeprägten Magnetfeldes, über das die Sonne verfügt. Schauen wir uns zunächst einmal an, was es damit auf sich hat.
Das solare Magnetfeld und seine Auswirkungen
Normalerweise verhält sich dieses Magnetfeld wie ein Dipol: Die Feldlinien verlaufen wie bei einem Stabmagneten in Schleifen vom Nord- zum Südpol der Sonne. Da jedoch die Sonne kein starrer Körper ist, sondern ein Gasball, der sich außerdem noch dreht, und zwar am Äquator etwas schneller als an den Polen, werden die Feldlinien verzerrt. Am Äquator eilen sie der Position an den Polen voraus und werden so mehr und mehr aufgewickelt und verdrillt. Hinzu kommt noch die schon bekannte Konvektion, welche die an die Materie gebundenen Magnetfeldlinien an die Oberfläche treibt, sodass sie an manchen Stellen die Schicht der Photosphäre durchstoßen. An diesen Stellen bilden sich die bereits von Galilei entdeckten Sonnenflecken. Normalerweise erscheinen sie paarweise. Der eine Partner bildet den magnetischen Nordpol. Hier tritt das Magnetfeld nahezu senkrecht aus der Sonne aus, spannt sich in einer bogenförmigen Schleife zum anderen Partner, dem magnetischen Südpol, und läuft dort wieder praktisch senkrecht in die Sonne hinein. Das Magnetfeld kann dort bis zu 1000-mal stärker sein als das irdische. Da das Magnetfeld die Konvektion
Weitere Kostenlose Bücher