Eine kurze Geschichte der Zeit (German Edition)
wir nicht sehen, wieviel Entropie die Materie im Innern hat. Deshalb wäre es schön, wenn ein draußen befindlicher Beobachter anhand irgendeiner Eigenschaft des Schwarzen Loches etwas über seine Entropie aussagen könnte, die zunehmen müßte, wenn Entropie enthaltende Materie hineinfiele. Ausgehend von der erwähnten Entdeckung, daß die Fläche des Ereignishorizonts zunimmt, wenn Materie ins Schwarze Loch fällt, schlug Jacob Bekenstein, ein Doktorand in Princeton, vor, die Fläche des Ereignishorizonts als ein Maß für die Entropie des Schwarzen Loches anzusehen: Wenn Materie mit einem bestimmten Maß an Entropie in das Schwarze Loch falle, erweitere sich die Fläche des Ereignishorizonts, so daß sich die Summe aus der Entropie der Materie außerhalb der Schwarzen Löcher und aus der Fläche ihrer Ereignishorizonte niemals verringere.
Durch diese Hypothese schien die Gültigkeit des Zweiten Hauptsatzes der Thermodynamik für die meisten Situationen gewahrt zu bleiben. Doch sie hatte einen fatalen Fehler. Wenn ein Schwarzes Loch Entropie besitzt, dann sollte es auch eine Temperatur haben. Nun muß aber ein Körper mit einer bestimmten Temperatur ein gewisses Maß an Strahlung emittieren. Wir wissen alle aus der alltäglichen Erfahrung, daß sich ein Feuerhaken, wenn wir ihn lange genug in ein Feuer halten, zur Rotglut erhitzt und Strahlung abgibt. Auch Körper mit niedrigeren Temperaturen senden Strahlung aus: nur bemerken wir sie in der Regel nicht, weil die Strahlenmenge zu gering ist. Diese Strahlung ist erforderlich, um eine Verletzung des Zweiten Hauptsatzes zu vermeiden. Schwarze Löcher müßten also Strahlung abgeben, doch definitionsgemäß sind sie Objekte, die gar nichts emittieren. So hatte es den Anschein, als ließe sich die Fläche des Ereignishorizonts nicht als seine Entropie auffassen. 1972 schrieb ich zusammen mit Brandon Carter und einem amerikanischen Kollegen, Jim Bardeen, einen Artikel, in dem wir darauf hinwiesen, daß es bei allen Ähnlichkeiten zwischen der Entropie und der Fläche des Ereignishorizonts ebendieses unausweichliche Problem gebe. Ich muß zugeben, dieser Artikel ging zumindest teilweise auf meine Verärgerung über Bekenstein zurück, der, wie ich fand, meine Entdeckung, daß die Fläche des Ereignishorizonts zunimmt, falsch verwendet hatte. Indes, am Ende stellte sich heraus, daß er im Grunde genommen recht hatte, wenn auch in einer Art und Weise, die ihm sicherlich nicht in den Sinn gekommen war.
Bei einem Aufenthalt in Moskau im September 1973 erörterte ich die Probleme Schwarzer Löcher mit Jakow Seldowitsch und Alexander Starobinski, zwei führenden sowjetischen Wissenschaftlern auf diesem Gebiet. Sie überzeugten mich davon, daß rotierende Schwarze Löcher nach der Unschärferelation der Quantenmechanik Teilchen hervorbringen und emittieren müssen. Physikalisch leuchtete mir ihre Argumentation ein, doch die mathematische Methode, mit der sie die Emission errechneten, gefiel mir nicht. Deshalb machte ich mich auf die Suche nach einem besseren mathematischen Verfahren, das ich schließlich Ende November 1973 in einem informellen Seminar in Oxford vorstellte. Damals hatte ich noch nicht berechnet, wieviel Strahlung tatsächlich emittiert würde. Ich erwartete, die Strahlenmenge vorzufinden, die Seldowitsch und Starobinski für rotierende Schwarze Löcher vorhergesagt hatten. Doch als ich die Berechnungen durchführte, stellte ich zu meiner Überraschung und meinem Ärger fest, daß auch nicht-rotierende Schwarze Löcher offensichtlich Teilchen in steter Menge hervorbringen und emittieren. Zunächst glaubte ich, die errechnete Emission zeige, daß einige der von mir verwendeten Näherungen nicht richtig seien. Ich befürchtete, wenn Bekenstein dieses Resultat zu Ohren käme, würde er es als weiteres Argument zur Untermauerung seiner Hypothese über die Entropie Schwarzer Löcher verwenden, die mir noch immer nicht zusagte. Doch je mehr ich darüber nachdachte, desto zutreffender schienen mir die Näherungen zu sein. Endgültig überzeugt davon, daß die Emission real sei, war ich, als ich feststellte, daß das Spektrum der emittierten Teilchen genau dem Emissionsspektrum eines heißen Körpers entspricht und daß das Schwarze Loch Teilchen in genau der Menge emittiert, die erforderlich ist, um Verstöße gegen den Zweiten Hauptsatz zu vermeiden. Seither sind die Berechnungen in verschiedener Form von anderen Wissenschaftlern wiederholt worden. Sie bestätigen
Weitere Kostenlose Bücher