Bücher online kostenlos Kostenlos Online Lesen
Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]

Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]

Titel: Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache] Kostenlos Bücher Online Lesen
Autoren: Michio Kaku
Vom Netzwerk:
Superstringtheorie.

    Signale aus dem All
    Da der SSC nie gebaut werden und folglich niemals Teilchen entdecken wird, die niederenergetischen Resonanzen des Superstrings sind, bestünde eine andere Möglichkeit darin, die Energie kosmischer Strahlen zu messen – hochenergetischer subatomarer Teilchen, deren Ursprung zwar noch nicht bekannt ist, aber jenseits der Milchstraße tief im All liegen muß. Obwohl beispielsweise niemand weiß, woher kosmische Strahlen kommen, steht doch fest, daß ihre Energien weit größer sind als alles, was man bisher im Labor entdeckt hat.
    Anders als die kontrollierten Strahlen, die wir in Atomzertrümmerern erzeugen, besitzen kosmische Strahlen unvorhersagbare Energien und können nicht auf Verlangen exakte Energien hervorrufen. In gewissem Sinne ist es so, als versuchten wir, ein Feuer entweder durch Anstellen eines Wasserschlauchs oder durch Warten auf einen Wolkenbruch zu löschen. Der Wasserschlauch ist sehr viel bequemer: Wir können ihn anstellen, wann wir wollen, den Wasserstrahl nach Belieben regulieren, und stets strömt das Wasser mit gleichbleibender Geschwindigkeit. Das Wasser aus einem Hydranten entspricht also der Erzeugung kontrollierter Strahlen in Atomzertrümmerern. Hingegen kann das Wasser eines Wolkenbruchs sehr viel reichlicher und wirksamer als das aus dem Hydranten sein. Natürlich besteht das Problem darin, daß Wolkenbrüche so wenig vorhersagbar sind wie kosmische Strahlen. Wir können den Regen nicht regulieren und seine Geschwindigkeit vorhersagen; er kann also wilden Schwankungen unterworfen sein.
       Zum erstenmal wurden kosmische Strahlen vor 80 Jahren entdeckt, und zwar in einem Experiment, das der Jesuitenpater Theodor Wulf auf der Spitze des Eiffelturms durchgeführt hat. Von der Jahrhundertwende bis in die dreißiger Jahre stiegen mutige Wissenschaftler mit Fesselballons empor oder auf hohe Berge hinauf, um möglichst unbeeinträchtigte Messungen kosmischer Strahlen vorzunehmen. Doch in den dreißiger Jahren, als Ernest Lawrence das Zyklotron erfand und im Labor kontrollierte Strahlen erzeugte, die energiereicher waren als die meisten kosmischen Strahlen, begann die Erforschung kosmischer Strahlen zu erlahmen. Beispielsweise sind kosmische Strahlen, die eine Energie von bis zu 100 Millionen Elektronenvolt besitzen, so häufig wie Regentropfen. Mit einer Rate von ein paar Hundert pro Quadratmeter und Sekunde treffen sie auf die Erdatmosphäre. Doch auf der Grundlage von Lawrences Erfindung konstruierte man riesige Maschinen, die diese Energie um einen Faktor von 10 bis 100 übertreffen konnten.
       Glücklicherweise haben sich Experimente über kosmische Strahlen erheblich gewandelt, seit Pater Wulf zum erstenmal seine elektrifizierten Gläser auf den Eiffelturm setzte. Heute können Raketen und sogar Satelliten Strahlenmesser hoch in den Weltraum tragen, wo die atmosphärischen Einflüsse nur noch eine minimale Rolle spielen. Wenn ein hochenergetischer kosmischer Strahl auf die Atmosphäre trifft, läßt er zertrümmerte Atome in seinem Kielwasser zurück. Diese Trümmer erzeugen ihrerseits einen Schauer zertrümmerter Atome oder Ionen, die auf dem Boden durch entsprechende Detektoren entdeckt werden können. Durch eine Zusammenarbeit zwischen der University of Chicago und der University of Michigan ist das bislang ehrgeizigste Projekt für kosmische Strahlung zustande gekommen, ein riesiges Feld von 1089 Detektoren, die über knapp drei Kilometer Wüste verteilt sind und auf kosmische Strahlenschauer warten, um Alarm zu schlagen. Diese Detektoren befinden sich auf einem idealen, isolierten Gelände: dem Dugway Proving Grounds, 130 Kilometer südwestlich von Salt Lake City in Utah.
       Der Utah-Detektor ist empfindlich genug, um den Ursprung einiger der energiereichsten kosmischen Strahlen auszumachen. Bislang sind Cygnus-X-3 und Hercules-X-1 als starke kosmische Strahlenquellen entdeckt worden. Wahrscheinlich handelt es sich um große rotierende Neutronensterne oder sogar Schwarze Löcher, die langsam einen Begleitstern verzehren, dabei einen riesigen Energiewirbel erzeugen und gewaltige Strahlungsströme (beispielsweise Protonen) ins All speien.
       Die energiereichsten Strahlen, die man bislang entdeckt hat, besaßen eine Energie von 10 Elektronenvolt. Das ist ein schier unglaublicher Wert: Das Zehnmillionenfache der Energie, die im SSC erzeugt worden wäre. Wir rechnen nicht damit, noch innerhalb dieses Jahrhunderts mit unseren

Weitere Kostenlose Bücher