Hyperspace: eine Reise durch den Hyperraum und die zehnte Dimension ; [Einsteins Rache]
Wurmlöcher können ein Universum mit sich selbst verbinden und vielleicht auf diese Weise eine Voraussetzung für interstellare Reisen schaffen. Da Wurmlöcher zwei verschiedene Zeitperioden miteinander verknüpfen können, schaffen sie möglicherweise auch die Voraussetzungen für Zeitreisen. Wurmlöcher könnten außerdem eine Verbindung zwischen einer unendlichen Zahl von Parallel- universen herstellen. Man hofft, eines Tages mit Hilfe der Hyperraumtheorie ent- scheiden zu können, ob Wurmlöcher physikalisch möglich oder nur mathematische Merkwürdigkeiten sind.
fehlt. Wir werden erkennen, daß ihren Spekulationen zwei wichtige Konzepte fehlten: ein physikalisches und ein mathematisches Prinzip. Aus heutiger Sicht ist das fehlende physikalische Prinzip die Erkenntnis, daß der Hyperraum die Naturgesetze vereinfacht, indem er die Möglichkeit bietet, alle Naturkräfte durch rein geometrische Argumente zu vereinigen. Das fehlende mathematische Prinzip heißt Feldtheorie; sie ist die universelle mathematische Sprache der theoretischen Physik.
Feldtheorie – die Sprache der Physik
Felder hat der große englische Physiker Michael Faraday im 19. Jahrhundert eingeführt. Faraday war der Sohn eines armen Schmieds und ein hochbegabter Autodidakt, der komplizierte Experimente zu Elektrizität und Magnetismus durchführte. Er stellte sich »Kraftlinien« vor, die wie die Ranken einer Pflanze in alle Richtungen aus Magneten und elektrischen Ladungen hervorwachsen und den ganzen Raum ausfüllen. Mit seinen Instrumenten konnte Faraday die Stärke dieser Kraftlinien einer magnetischen oder elektrischen Ladung an jedem Punkt seines Laboratoriums messen. So vermochte er diesem Punkt (und jedem anderen Punkt im Raum) eine Reihe von Zahlen (die Stärke und Richtung der Kraft) zuzuweisen. Die Gesamtheit dieser Zahlen an jedem Punkt im Raum, als eine Einheit behandelt, bezeichnete er als Feld. (Über Michael Faraday gibt es eine bekannte Anekdote. Da sein Ruhm in aller Munde war, kamen häufig neugierige Besucher zu ihm. Als ihn einer fragte, wozu seine Arbeit tauge, antwortete er: »Wozu taugt ein Kind? Es wächst zu einem Erwachsenen heran.« Eines Tages suchte William Gladstone, damals Finanzminister, Faraday in seinem Labor auf. Gladstone, der keinerlei naturwissenschaftliche Kenntnisse besaß, fragte Faraday sarkastisch, welchen Nutzen seine riesigen elektrischen Geräte denn für England haben könnten. Darauf Faraday: »Ich weiß zwar nicht, wozu man diese Maschinen verwenden wird, Sir, aber ich bin sicher, daß Sie sie eines Tages besteuern werden.« Heute wird ein Großteil des englischen Kapitals in die Ergebnisse der Faradayschen Arbeit investiert.)
Einfach ausgedrückt, besteht ein Feld aus einer Reihe von Zahlen, die an jedem Punkt definiert sind und die eine Kraft an diesem Punkt vollständig beschreiben. Beispielsweise können drei Zahlen an jedem Punkt im Raum die Intensität und Richtung der magnetischen Kraftlinien angeben. Weitere drei Zahlen beschreiben überall im Raum das elektrische Feld. Zu diesem Konzept gelangte Faraday, als er sich ein »Feld« vorstellte, das von einem Bauern gepflügt wird. Das Feld eines Bauern hält eine zweidimensionale Raumregion besetzt. Jedem Punkt in diesem Feld kann man eine Reihe von Zahlen zuordnen (die beispielsweise beschreiben, wie viele Saatkörner sich an diesem Punkt befinden). Allerdings nimmt Faradays Feld eine dreidimensionale Raumregion ein. An jedem Punkt gibt es eine Folge von sechs Zahlen, die sowohl die magnetischen wie die elektrischen Kraftlinien beschreiben.
Faradays Feldkonzept ist deshalb so leistungsfähig, weil sich alle Naturkräfte als Felder ausdrücken lassen. Allerdings fehlt uns noch ein Element, um die Natur jeder Kraft zu verstehen: Wir müssen in der Lage sein, die Gleichungen niederzuschreiben, denen diese Felder gehorchen. Die Fortschritte, die man während der letzten hundert Jahre in der theoretischen Physik erzielt hat, lassen sich kurz und bündig als die Suche nach den Feldgleichungen der Naturkräfte beschreiben.
In den sechziger Jahren des vorigen Jahrhunderts hat beispielsweise der schottische Physiker James Clerk Maxwell die Feldgleichungen für die Elektrizität und den Magnetismus entwickelt. 1915 entdeckte Einstein die Feldgleichungen der Gravitation. Nach unzähligen Fehlversuchen gelangte man in den siebziger Jahren endlich zu den Feldgleichungen der subatomaren Kräfte, wobei man auf die früheren
Weitere Kostenlose Bücher