Je mehr Löcher, desto weniger Käse
größer als 1, die nur durch 1 und durch sich selbst teilbar ist.
Quadratwurzel Die Quadratwurzel der Zahl x ist jene Zahl y, für die gilt y 2 = x.
Quadrieren Wenn man eine Zahl quadriert, multipliziert man sie mit sich selbst.
Quersumme Die Quersumme ist die Summe der Ziffernwerte einer Zahl. Ein Beispiel: 111: 1 + 1 + 1 = 3.
Quotient Ein Quotient ist ein Bruch, also eine Zahl der Form.
Rotationssymmetrie Ein geometrisches Objekt ist rotationssymmetrisch, wenn man es durch Drehung um einen Winkel größer als 0 und kleiner als 360 Grad mit sich selbst in Deckung bringen kann. Ein typisches Beispiel ist ein regelmäßiges Fünfeck.
Satz Ein Satz ist eine Aussage in der Mathematik, die bewiesen werden muss. Grundlage dafür sind Axiome und andere Sätze, deren Richtigkeit schon bewiesen wurde.
Spieltheorie Das Arbeitsgebiet der Spieltheorie sind Systeme mit mehreren handelnden Personen, in denen der Erfolg des Einzelnen nicht nur vom eigenen Handeln, sondern auch von den Aktionen der anderen abhängt. Ziel der Untersuchungen ist es unter anderem, sich aus dem Handeln ergebende Vor- und Nachteile für Personen und Institutionen abzuleiten.
Stochastik In der Stochastik, einem Teilgebiet der Mathematik, werden die Wahrscheinlichkeitstheorie und die Statistik zusammengefasst.
Summand Als Summanden bezeichnet man eine Zahl, die zu einer anderen addiert wird.
Teiler Der Teiler t einer natürlichen Zahl a lässt keinen Rest, wenn man a durch t dividiert. Der Teiler ist selbst auch eine natürliche Zahl.
Term Ein Term ist ein mathematischer Ausdruck, der Zahlen, Variablen, Symbole mathematischer Operationen wie plus und minus sowie Klammern enthalten kann. Ein Beispiel für einen Term ist a × x + 5.
Theorem Ein Theorem ist ein Satz von ganz besonderer Bedeutung, der bewiesen werden muss. Grundlage dafür sind Axiome und andere Sätze, deren Richtigkeit schon bewiesen wurde.
Topologie Die Topologie ist ein Teilgebiet der Mathematik. Sie untersucht die Eigenschaften geometrischer Körper, die sich durch Verformungen nicht ändern. Eine Tasse und ein Donut sind beispielsweise topologisch gesehen gleich.
Ungleichung Eine Ungleichung besagt, dass zwei Ausdrücke links und rechts vom Ungleichheitszeichen unterschiedlich groß sind.
Variable Eine Variable steht für eine Zahl, deren Größe nicht oder noch nicht festgelegt ist. Variablen werden daher von Buchstaben repräsentiert.
Winkelsumme Die Summe der Innenwinkel in einem Dreieck beträgt 180 Grad. In einem Viereck sind es 360 Grad. Die allgemeine Formel für ein n-Eck lautet: (n –2) × 180 Grad.
Wurzel Mit Wurzel ist meist die Quadratwurzel einer Zahl x gemeint, also jene Zahl y, für die gilt y 2 = x. Man kann auch die dritte oder allgemein die n-te Wurzel einer Zahl berechnen, also die Zahlen q und r suchen, für die gilt x = q 3 beziehungsweise x = r n .
Zahl, irrationale Eine irrationale Zahl ist eine unendliche, nichtperiodische Zahl, die sich nicht als Quotient zweier ganzer Zahlen darstellen lässt. Die Wurzel aus 2 und die Kreiszahl Pi sind zum Beispiel irrationale Zahlen.
Zahl, natürliche Die Menge aller natürlichen Zahlen ist folgendermaßen definiert: Die kleinste natürliche Zahl ist die 0. Jede natürliche Zahl n hat genau einen Nachfolger n + 1. Alle natürlichen Zahlen >0 haben genau einen Vorgänger.
Zahl, rationale Eine rationale Zahl r lässt sich stets als Quotient zweier ganzer Zahlen a und b darstellen:. Wobei b ungleich 0 ist.
Zahl, transzendente Eine Zahl t heißt transzendent, wenn kein Polynom mit rationalen Koeffizienten existiert, das die Zahl t als Nullstelle hat. Die Kreiszahl Pi ist ein Beispiel dafür.
Zähler Eine rationale Zahl r kann stets als Bruch oder Quotient zweier ganzer Zahlen a und b dargestellt werden:. Dabei bezeichnet man a als Zähler und b als Nenner.
Zehnerlogarithmus Der Zehnerlogarithmus ist der Logarithmus einer Zahl zur Basis 10.
[Menü]
Lösungen
Aufgabe 1
Die Summe zweier natürlicher Zahlen ist 119, ihre Differenz ist 21. Wie lauten die beiden Zahlen?
Wir nennen die gesuchten Zahlen a und b. Dann gilt
a + b = 119 und
a – b = 21
Wenn wir beide Gleichungen addieren, erhalten wir
a + b + a – b = 119 + 21
2a = 140
a = 70
Weil a
Weitere Kostenlose Bücher