Bücher online kostenlos Kostenlos Online Lesen
Kosmologie für Fußgänger

Kosmologie für Fußgänger

Titel: Kosmologie für Fußgänger Kostenlos Bücher Online Lesen
Autoren: H Lesch
Vom Netzwerk:
gleichzeitige Wissen um alle physikalischen Parameter eines Teilchens anbelangt. Alle Lebewesen im Universum, der weiseste Zauberer einer weit entwickelten außerirdischen Kultur genauso wie die bescheidensten Physiker auf der Erde, sind der Heisenberg’schen Unbestimmtheitsrelation unterworfen. In der klassischen Physik war angenommen worden, man könnte im Prinzip Lage und Bahnen von Milliarden Teilchen, Protonen etwa, genau messen und daraus genaue Vorhersagen ableiten, wo sich die Protonen zu einem gewissen Zeitpunkt in der Zukunft befinden würden. Heisenberg wies nach, dass diese Annahme falsch war. Wir können niemals alles über das Verhalten von auch nur einem einzigen Teilchen wissen, geschweige denn von Milliarden, und deshalb sind exakte Vorhersagen über die Zukunft unmöglich. Diese Erkenntnis war ein Sprung, ein Quantensprung in der Welt der Physik. Nicht nur Masse und Energie, sondern das Wissen selbst ist quantisiert. Je detaillierter Physiker die subatomare Welt untersuchen, desto bedrohlicher lauert die Unbestimmtheit. Wenn ein Lichtquant gegen ein Atom stößt und ein Elektron in eine höhere Bahn befördert, begibt sich das Elektron augenblicklich von der niedrigeren auf die höhere Bahn, ohne den dazwischenliegenden Raum zu durchqueren! Die Bahnradien sind selbst quantisiert. Das Elektron hört einfach auf, an einem Ort zu sein, stattdessen erscheint es am anderen. Das ist der berühmte »Quantensprung«, nicht nur philosophisch eine harte Nuss. Wem solche Überlegungen sehr komplex vorkommen, der befindet sich in guter Gesellschaft. Niels Bohr bemerkte einmal: »Jemand, der sagt, er könne über Quantenprobleme nachdenken, ohne schwindlig zu werden, zeigt damit nur, dass er nicht das Geringste davon verstanden hat.«
    Die Unbestimmtheit der Quantenwelt trifft auch die Schwarzen Löcher, wenn sie immer mehr zusammenschrumpfen. Sie schwanken um einen Ort herum mit der Unschärfe des Planck’schen Wirkungsquantums. Die Singularität, das heißt der exakte Punkt, ist weder für Teilchen noch für Schwarze Löcher erreichbar. Dies ist die vermutliche Lösung des Singularitätsproblems bei Schwarzen Löchern – vermutlich! Leider ist bis heute noch keine Theorie in der Lage, die Schwerkraft in die Quantenwelt zu integrieren. Wenn es aber gelingt, Relativitäts- und Quantentheorie zu einer Theorie der Quantengravitation zu vereinigen, dann können wir nicht nur das Singularitätsproblem beseitigen, dann haben wir auch ein Modell für die Physik des Urknalls!
    Doch jetzt genug von diesen Quanteneffekten. Jetzt wollen wir endlich darüber reden, wie man Schwarze Löcher im Kosmos sucht, wie man sie findet und welche Auswirkungen sie auf ihre Umgebung haben.

Die Suche nach und die Entdeckung von Schwarzen Löchern
    Wie soll man ein schweres Objekt finden, das nicht strahlt? Man sucht nach Zeichen der Schwerkraft, die dieses »schwarze« Objekt auf seine Umgebung ausübt, denn Schwerkraft ist nicht abschirmbar. Ginge es um ein elektrisch geladenes Objekt, wäre es möglich, dass sich in der Umgebung Teilchen mit entgegengesetzter Ladung ansammeln und das elektrische Feld abschirmen. Bei Schwerkraftfeldern geht das nicht, schwere Objekte machen sich immer bemerkbar durch ihre Schwerkraftwirkung auf die Umgebung.
    Was erwartet man in der Umgebung eines Sterns, der sich zum Schwarzen Loch entwickelt hat? Normalerweise ist die Umgebung eines Sterns ziemlich leer. Ein Stern drückt kraft seiner Strahlung alle Gasteilchen aus seiner direkten Nachbarschaft weg. Da nur schwere, also massereiche Sterne zu Schwarzen Löchern werden und solche schweren Sterne viel heißer sind als die Sonne und folglich die Strahlung noch intensiver ist als die Sonnenstrahlung, ist die unmittelbare Nachbarschaft eines solchen Vorläufers eines Schwarzen Loches noch leerer als die Sonnenumgebung. Außerdem durchlaufen schwere Sterne, ehe sie zu einem Schwarzen Loch kollabieren, verschiedene Phasen enormer Aktivität, die mit gigantischen Plasmaexplosionen verbunden sind. Auch dieses Plasma verschwindet aus dem Umfeld des Vorläufersterns.
    Also, die Umgebung eines Schwarzen Loches ist leer – normalerweise. Es sei denn, das Schwarze Loch ist in einem Doppelsternsystem entstanden, in dem einer der Sterne sich zu einem Schwarzen Loch entwickelt hat, der andere aber nicht. Dann lässt sich aus dem Verhalten des noch sichtbaren Begleitsterns die Masse des unsichtbaren Partners berechnen. Ist die errechnete Masse größer als etwa

Weitere Kostenlose Bücher