Kosmologie für Fußgänger
2,8 Sonnenmassen, kann man sicher sein, dass es sich um ein Schwarzes Loch handelt. In der Milchstraße ist Cygnus X-1 ein solches System. Dort hat der unsichtbare Begleiter eine minimale Masse von 3,5 Sonnenmassen, eher mehr. In der Tat ist das ein Verfahren, um nach Kandidaten für Schwarze Löcher zu fahnden.
Es gibt noch eine zweite Methode, die allerdings nur indirekte Schlussfolgerungen auf ein eventuelles Schwarzes Loch zulässt. In einem Raumgebiet, in dem die Schwerkraft einer zentralen Masse alles dominiert, werden die Bewegungen von Teilchen hauptsächlich durch die Schwerkraft dieser Masse bestimmt. Unter Teilchen sind hier sowohl Planeten als auch Gas zu verstehen. So sind zum Beispiel die Bahnen der Planeten im Sonnensystem durch die Schwerkraft der Sonne festgelegt. Sie umkreisen die Sonne auf so genannten Kepler-Bahnen. Johannes Kepler war der Erste, der die Bahnbewegungen von Himmelskörpern um schwere Massen genau berechnete. Er fand heraus, dass die Geschwindigkeit, mit der Planeten ihren Stern umkreisen, direkt proportional zur Wurzel der Sternmasse und umgekehrt proportional zur Wurzel des Abstands vom Stern ist. Ein Planet umkreist den Stern schneller, wenn er ihm sehr nah ist, und umrundet ihn bei größeren Entfernungen schneller. Die Frequenz, mit der Planeten ihre Sterne umkreisen, ist also nicht konstant wie bei einem starren Körper, vielmehr verringert sie sich mit zunehmender Entfernung. Planeten in unterschiedlichen Entfernungen rotieren also differenziell um ihre Sterne. Das Gleiche gilt für Gasteilchen um Schwarze Löcher.
In einem Doppelsystem kann das Schwarze Loch von der Gashülle seines Begleitsterns Gas zu sich herüberziehen. Das Loch selbst ist zwar nur einige Kilometer groß, aber in Entfernungen von etlichen tausend Kilometern macht sich seine Schwerkraft bereits deutlich bemerkbar. So fließt Gas vom Begleiter auf das Schwarze Loch. Aufgrund der Eigendrehung des Sterns sammelt sich das Gas aber nicht in Form einer Kugel um das Schwarze Loch, sondern bildet eine Scheibe. Das vom Begleitstern abströmende Gas besitzt nämlich noch Drehenergie, die es in eine Scheibe um das Loch zwingt. Solange das Gas noch schnell um das Loch rotiert, kann es nicht direkt auf das Loch fallen. Erst durch Reibungsprozesse auf der immer dichter werdenden Scheibe verliert das Gas Drehenergie und rutscht sozusagen langsam in den Schwerkrafttrichter des Schwarzen Loches hinein. Bei diesem Hineinrutschen – die Experten sprechen von Akkretion – wird das Gas zunehmend heißer und dichter, bis es schließlich an der inneren Karte der Akkretionsscheibe angekommen ist und frei in das Schwarze Loch hineinfällt. Dabei wird es so stark beschleunigt, dass es intensiv zu strahlen beginnt. Die Leuchtkraft einer Scheibe hängt dann nur noch davon ab, wie schwer das Schwarze Loch ist, das die Materie zu sich zieht, mit welcher Geschwindigkeit das Scheibengas in der Scheibe zum Loch hinrutscht und wie viel Gas pro Zeiteinheit das Schwarze Loch vom Begleitstern abziehen kann. Akkretion bedeutet die Umwandlung der Schwerkraftenergie des zentralen Körpers (hier eines Schwarzen Loches) in Bewegungsenergie und letztlich in Strahlung. Während die Leuchtkraft eines Sterns von den Kernfusionsprozessen abhängt, die im Stern stattfinden, ist die Leuchtkraft einer Akkretionsscheibe direkt vom Schwerkraftfeld, das heißt der Gravitation des Schwarzen Loches, abhängig. So wandelt beispielsweise die Sonne in der Phase des Wasserstoffbrennens, das immerhin rund acht Milliarden Jahren andauert, durch die Verschmelzung von vier Wasserstoffkernen, also vier Protonen zu einem Heliumkern, nur etwa 0,7 Prozent der Ruhemasse der Protonen in Energie um. Bei Akkretionsscheiben um Schwarze Löcher sind es zwischen acht und 40 Prozent! Die Masse des in das Schwarze Loch hineinfliegenden Gases kann zu einem großen Teil in Strahlung umgesetzt werden.
Dass solche Akkretionsscheiben stärker leuchten als ein Stern, ist auch ein Beweis für die Spezielle Relativitätstheorie von Einstein, die ja den Zusammenhang von Energie und Masse vorhersagt. Dort findet sich die berühmte Formel: E = mc 2 . Die Energie ist der Masse direkt proportional, und die Proportionalitätskonstante ist das Quadrat der Lichtgeschwindigkeit. Eine Leuchtkraft, also Energie pro Zeit, ergibt sich aus diesem Zusammenhang, indem man die Masse durch die Zeit teilt, die sie braucht, um in das Schwarze Loch hineinzufallen. Die Rate, mit der Gas in das Schwarze
Weitere Kostenlose Bücher