Kosmologie für Fußgänger
Loch hineinfliegt, hängt von der Masse des Loches ab und von der Geschwindigkeit des Gases. Wieso gibt es aber einen Unterschied in der Effizienz der Energiefreisetzung? Wieso ist der Wirkungsgrad dieser »Maschine« nicht immer gleich, sondern kann im Bereich von acht bis 40 Prozent schwanken?
Um diese Fragen zu beantworten, müssen wir zunächst klären, wovon die Umsetzung von Masse in Energie bei einer Akkretionsscheibe abhängt. Sie hängt davon ab, wie tief die Scheibe in den Schwerkraftschlund des Schwarzen Loches hineinragt, ehe die Materie frei dem Schwarzen Loch entgegenfällt, um dann endgültig und unwiederbringlich aus diesem Universum zu verschwinden. Den Begriff Schwarzschild-Radius haben wir ja schon kennen gelernt. Er beschreibt die Größe des Horizonts, hinter dem sich das weitere Schicksal der Materie unseren Beobachtungsmöglichkeiten entzieht. Es zeigt sich, dass bei einem Schwarzschild-Loch die innerste stabile Kreisbahn für Materie in einer Akkretionsscheibe bei rund drei Schwarzschild-Radien liegt. Für eine Sonnenmasse beträgt der Schwarzschild-Radius drei Kilometer, eine Scheibe um dieses Schwarze Loch könnte also bis etwa zehn Kilometer an den Horizont heranreichen, ohne dass die Materie am inneren Rand der Scheibe sofort vom Loch verschlungen würde. Das Gas auf dieser innersten Bahn dreht sich so schnell, dass es sich zunächst im Gleichgewicht mit der Schwerkraft des Schwarzen Loches befindet. Verliert das Gas allerdings durch Reibung etwas von seinem Drehimpuls, so rutscht es über die Kante und saust ins Loch. Die Bewegungsenergie, die dem Gas auf dieser innersten Bahn innewohnt, ist die Energie, die es abstrahlen kann. Aufgrund der enormen Beschleunigung durch das Schwarze Loch macht die Bewegungsenergie bereits einen merklichen Prozentsatz der energieäquivalenten Ruhemasse der Materie aus. Bei einem Schwarzschild-Loch sind das etwa acht Prozent der Ruhemasse, die in Strahlungsenergie umgesetzt werden können. Gegenüber der Wasserstofffusion in der Sonne ist das eine Verbesserung um den Faktor 11. Das ist nicht schlecht. Aber es wird noch besser.
Vielleicht ist aufgefallen, dass wir soeben den Begriff Schwarzschild-Loch eingeführt haben. Warum eigentlich? Gibt es noch andere Schwarze Löcher als die von Karl Schwarzschild berechneten? Und überhaupt, was ist eigentlich ein Schwarzschild-Loch? Beantworten wir zunächst die letzte Frage: Ein Schwarzschild-Loch ist ein nicht rotierendes Schwarzes Loch. Die Antwort auf die andere Frage lautet: Jawohl, es gibt noch andere als nicht rotierende Schwarze Löcher, nämlich rotierende Schwarze Löcher. Sie werden nach ihrem mathematischen Entdecker, dem Neuseeländer Roy Kerr, als Kerr-Löcher bezeichnet. Die Lösung, die selbst von Kerr eher als eine mathematische Kuriosität angesehen wurde, beschreibt die Verzerrung von Raum und Zeit um jedes realistische Schwarze Loch und hat allergrößte Bedeutung erlangt. Wieso?
Wenn ein Schwarzes Loch rotiert, dann dreht sich auch der Raum um das Schwarze Loch. Noch schlimmer, der Raum wird verdrillt, und zwar so, als ob er am Horizont des Schwarzen Loches festkleben würde. Je schneller das Loch sich dreht, desto kleiner wird der Horizont, er zieht sich sozusagen durch die Rotation des Loches zusammen. Für die Effizienz des Akkretionsprozesses hat das natürlich Folgen. Die Materie kann jetzt noch näher an den Horizont herankommen, ohne direkt vom Schwarzen Loch verschluckt zu werden. Näher am Horizont heißt: tiefer im Schwerkraftfeld des Schwarzen Loches. Somit kann mehr von der Ruhemasse des einfallenden Gases in Strahlung umgesetzt werden, nämlich bis zu 40 Prozent. Das ist noch einmal ein Faktor 5. Summa summarum haben wir jetzt eine rund 50-mal effizientere Energiefreisetzungsmaschine im Vergleich zu einem Stern wie unserer Sonne.
Versuchen wir nun eine Frage zu beantworten, die sich vermutlich längst im Hinterkopf gebildet hat: Woher kriegen Schwarze Löcher eigentlich Drehenergie – mit anderen Worten, warum rotieren Schwarze Löcher? Das hängt damit zusammen, dass nichts in diesem Universum perfekt ist. Auch der Totalzusammenbruch eines Sterns verläuft immer mit kleinen Unregelmäßigkeiten, man möchte fast von Unwucht sprechen. Kleinste Schwankungen der Dichte in einem der Vorläufer zum Schwarzen Loch führen zu einem nicht gleichmäßigen Kollaps. Der Sternenrest fängt an zu taumeln und kollabiert zu einem um eine Achse sich drehenden Schwarzen Loch. Dieser Drehimpuls
Weitere Kostenlose Bücher