Bücher online kostenlos Kostenlos Online Lesen
Beck Wissen - Antimaterie - Auf der Suche nach der Gegenwelt

Beck Wissen - Antimaterie - Auf der Suche nach der Gegenwelt

Titel: Beck Wissen - Antimaterie - Auf der Suche nach der Gegenwelt Kostenlos Bücher Online Lesen
Autoren: Dieter B. Hermann
Vom Netzwerk:
Wert seiner zeitlichen Änderungen genau bekannt sein. Je genauer wir das eine kennen, desto ungenauer („unschärfer“) erfassen wir das andere. Deshalb kann auch niemals definitiv festgestellt werden, daß kein Feld vorhanden ist, denn das würde der „Unschärferelation“ widersprechen; dann müßten wir nämlich gleichzeitig die Feldstärke (Null) und die Änderungsrate (ebenfalls Null) erfassen können. Deshalb kann es auch keinen absolut leeren Raum geben. Stets ist eine Unbestimmtheit darüber vorhanden, welche Feldstärke gegeben ist.
    Versucht man sich dieses Schwanken der Feldstärke im Vakuum vorzustellen, so kann man an die ständige Entstehung und Wiedervernichtung von Teilchenpaaren denken, etwa Photonen und Gravitonen. Man spricht in diesem Fall von „virtuellen“ Teilchen, die sich zwar mit unseren Meßinstrumenten nicht feststellen lassen, deren Wirkung auf andere Teilchen aber nachweisbar ist. Sie existieren also tatsächlich. Dabei entstehen jeweils Teilchen und Antiteilchen, die im Falle der Photonen und Gravitonen miteinander identisch sind. Kommt es aber zur Entstehung von Fermionen, so sind es beispielsweise Elektronen und Positronen. Die Energiebilanz stimmt, denn eines der Teilchen besitzt positive Energie, das andere negative. Die Gesamtenergie bleibt stets dieselbe. Es entsteht also nichts aus dem Nichts. In der Nähe eines Schwarzen Loches kann nun das Unvorstellbare geschehen: Ein Paar virtueller Teilchen bildet sich, wobei das Teilchen mit der negativen Energie den Ereignishorizont des Schwarzen Loches in Richtung auf das Schwarze Loch überschreitet. Der Ereignishorizont stellt nun gerade die Grenze des Schwarzen Loches dar. Hier wird die Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit. Die dort schwebenden Photonen können das Schwarze Loch nicht verlassen, stürzen aber auch nicht hinein. Am Ereignishorizont ist das Gravitationsfeld des Schwarzen Loches so stark, daß aus dem virtuellen Teilchen ein reales werden kann. Die beiden Teilchen können zwar in das Schwarze Loch fallen, ebenso kann aber das Teilchen mit der positiven Energie auch entweichen. Ein von außen blickender Beobachter gewinnt den Eindruck, daß es aus dem Schwarzen Loch kommt. In Wirklichkeit stammt es aber von außen. Der andere Partner des Paares hat indessen dem Loch negative Energie hinzugefügt. Die verblüffende Konsequenz dieser Überlegungen besteht darin, daß ein Schwarzes Loch durch die „Hawking-Strahlung“ immer kleiner werden und sogar verdampfen kann.
     

    Abb. 15: Ein  Schwarzes  Loch als  Quelle  von  Antiteilchen  nach Stephen W. Hawking
     
    Ein anderer Weg, nach Antimaterie im Universum zu suchen, ist der direkte Nachweis von Antiteilchen mit Hilfe entsprechender Spektrometer, die außerhalb der Erdatmosphäre an Bord von Raumsonden oder erdumlaufenden Labors eingesetzt werden. Solange man dabei Protonen und Antiprotonen findet, entspricht dies der Erwartung, weil sie als Kollisionsprodukte hochenergetischer Partikel der kosmischen Strahlung mit interstellarer Materie entstehen müssen. Spektakulär wäre hingegen die Entdeckung von Antiheliumkernen oder Kernen noch schwererer Elemente, wie etwa Antikohlenstoff oder Antisauerstoff. Dies wäre ein wirklicher Hinweis auf das Vorkommen von Antisternen im Universum. Solche Nachweise sind jedoch bisher nie gelungen. Da die Nachweisgrenze mit den gegenwärtig zur Verfügung stehenden technischen Hilfsmitteln noch nicht extrem weitreichend ist, hoffen manche Physiker auf bessere Meßinstrumente. Insbesondere richtet sich das Augenmerk der Fachwelt auf den Einsatz des „Alpha Magnetic Spectrometer“ (AMS), das speziell für die Entdeckung von Antimaterie konstruiert wurde und 1998 an Bord des Space Shuttle fliegen soll sowie ab 2001 auch an Bord der Internationalen Raumstation Alpha.

 
     
III. Das Bild eines Kosmos aus purer Materie
     
     
     
Was uns die Fernrohre zeigen
     
    Seit wir den Himmel mit Teleskopen durchmustern, gelingen uns zunehmend immer tiefere Blicke in das Universum. Das verdanken wir vor allem der Vergrößerung der Empfängerflächen unserer Fernrohre, der Linsen- wie der Spiegelteleskope, aber auch den heute mit den Instrumenten verbundenen Detektoren (Fotoplatte, elektronenoptische Bildwandler usw.). Der immer tiefere Blick ins Weltall hat uns jedoch nicht einfach immer mehr von dem offenbart, was wir aus unserer näheren Umgebung ohnehin schon kannten. Vielmehr wurden mit dem Vordringen in

Weitere Kostenlose Bücher