Bücher online kostenlos Kostenlos Online Lesen
Beck Wissen - Materie - Von der Urmateria zum Leben

Beck Wissen - Materie - Von der Urmateria zum Leben

Titel: Beck Wissen - Materie - Von der Urmateria zum Leben Kostenlos Bücher Online Lesen
Autoren: Klaus Mainzer
Vom Netzwerk:
im Unterschied zum β-Zerfall keine Elementarteilchen in andere umgewandelt. Die Teilchen, die an der schwachen Wechselwirkung teilhaben, heißen Leptonen (gr. leptós = zart): z.B. Neutrinos (ν), Elektronen (e – ) und Myonen (μ + ). Sie besitzen keine oder nur geringe Massen. Leptonen und Myonen haben positive oder negative Ladung. Von den leichtesten Leptonen, den Neutrinos (ν) und Antineutrinos (ν¯), gibt es zwei Sorten: Elektron-Neutrinos (νe) und Myon-Neutrinos (νμ). Einer der aufregendsten Unterschiede wurde in den 50er Jahren entdeckt: Während die elektromagnetische Wechselwirkung räumlich spiegelungsinvariant ist, verletzt die schwache Wechselwirkung die Parität maximal.
    Trotz dieser Unterschiede schlugen Weinberg, Salam und Ward einen Vereinigungszustand beider Kräfte vor und gingen dabei von einer Symmetriehypothese aus. Sie nahmen an, daß in einem hypothetischen Anfangszustand hoher Energie von etwa 100 Giga-Elektronenvolt (1 GeV= 1 Milliarde Elektronenvolt) die schwache und elektromagnetische Wechselwirkung ununterscheidbar sind und in diesem Sinne eine gemeinsame Kraft bilden, die mathematisch durch eine SU(2)xU(1)-Symmetrie beschrieben wird. 1983 konnten diese Symmetriezustände mit hohem Energieaufwand in CERN realisiert werden. Bei kritischen Werten niedrigerer Energie bricht die Symmetrie spontan in zwei Teilsymmetrien U(1) und SU(2) auseinander, die der elektromagnetischen und schwachen Wechselwirkung entsprechen. Dieser Vorgang wird hier durch den sogenannten Higgs-Mechanismus erklärt. {42}
    Anschaulich ist das Konzept der spontanen Symmetriebrechung aus vielen physikalischen Bereichen bekannt: Ein Ei besitzt in Bezug auf seine Längsachse Rotations- und Spiegelungssymmetrie. Stellt man es senkrecht auf eine Tischplatte und überläßt es sich selber, so rollt es auf die Seite und bleibt in irgendeiner Richtung liegen: Die Symmetrie des Eis relativ zur senkrechten Achse auf dem Tisch ist gebrochen, wobei die Symmetrie der Eischale erhalten bleibt. Die Symmetriebrechung ist spontan, da die Orientierungsrichtung, in der das Ei schließlich liegen bleibt, nicht voraussagbar war. Die Ursache ist in diesem Fall die Gravitation der Erde, die das Ei einen energetisch günstigeren Zustand einnehmen läßt: Der symmetrische Zustand relativ zur senkrechten Achse der Tischplatte war energetisch nicht stabil.
    Kennzeichnend für die spontane Symmetriebrechung eines Systems ist die kritische Größe eines Kontrollparameters, der eine physikalische Randbedingung eines Systems (z.B. Energie) repräsentiert. Im Rahmen der physikalischen Kosmologie wird die SU(2)xU(1)-Symmetrie als ein realer Zustand des Universums gedeutet, der in einem bestimmten Entwicklungsstadium unter bestimmten Temperatur-und Energiebedingungen des Universums geherrscht haben muß. Das Universum selber wird also dabei als gigantisches Hochenergielaboratorium aufgefaßt, dessen Symmetriezustände in unseren irdischen Laboratorien teilweise „nachgemacht“ werden können. Allerdings beinhaltet die SU(2)xU(1)-Symmetrie insofern keine vollständige Vereinigung der schwachen und elektromagnetischen Kräfte, da sie jeweils für beide Kräfte eine eigene Symmetriegruppe vorsieht, der jeweils eine eigene Koppelungskonstante der beiden Wechselwirkungen entspricht. Um die Einbettung der schwachen und elektromagnetischen Kräfte in eine höhere Symmetriegruppe studieren zu können, muß zunächst die Symmetrie der starken Kräfte bestimmt werden.
    Die starke Kraft war als Kernkraft bekannt, die Proton und Neutron im Atomkern zusammenhält. In den 50er und 60er Jahren entdeckte man eine Fülle von neuen Teilchen, die mit der starken Kraft in Wechselwirkung standen, erzeugt und vernichtet wurden und deshalb Hadronen (gr. hadros = stark) hießen. Mit stärkeren Teilchenbeschleunigern und Energien ließen sich immer weitere Hadronen erzeugen.
    Heute wird die Vielfalt der Hadronen, die mit starken Kräften wechselwirken, auf die Symmetrieeigenschaften weniger Grundbausteine zurückgeführt. Gemeint sind die sogenannten Quarks, deren Freiheitsgrade als ,Farbzustände‘ illustriert werden. So ist ein Baryon (z.B. Proton und Neutron) aus drei Quarks aufgebaut, die durch drei verschiedene Farbzustände ,Rot‘, ,Grün‘ und ,Blau‘ unterschieden sind. Diese Farben sind in dem Sinne komplementär, als ein Hadron neutral bzw. ,farblos‘ gegenüber seiner Umgebung ist. Dieser Gesamtzustand bleibt bei globaler Transformation aller Quarks um

Weitere Kostenlose Bücher