Bücher online kostenlos Kostenlos Online Lesen
Geschichte des Gens

Geschichte des Gens

Titel: Geschichte des Gens Kostenlos Bücher Online Lesen
Autoren: Ernst Peter Fischer
Vom Netzwerk:
nicht behauptet, die wahre Geschichte erzählen zu können. Aber einige Dinge stehen fest, zum Beispiel die Tatsache, dass das entscheidende Experiment von dem deutschen Biochemiker Heinrich Matthaei durchgeführt worden ist, der als Postdoc in dem Laboratorium von Marshall Nirenberg gearbeitet hat, der später mit Nobelpreisehren ausgestattet worden ist. Was Matthaei tat, steht auch fest. Er stellte ein Reaktionsgemisch zusammen, mit dem in vitro Proteine hergestellt werden konnten (was ungefähr so zuverlässig funktionierte wie ein kompliziertes Kochrezept, für das schon einige Kochkünste verlangt werden). Matthaei fügte alle zwanzig Aminosäuren, eine chemische Energiequelle, ein paar Standardingredienzien und noch etwas hinzu. Dieses »noch etwas« bestand aus einer künstlich hergestellten RNA, bei der sich ein und derselbe Baustein wiederholte, nämlich der Baustein namens Uracil. Das Uracil spielt in der RNA die Rolle, die das Thymin in der DNA spielt. Wenn eine Zelle ihre DNA in RNA überschreibt, wird Adenin zu Adenin, Cytosin zu Cytosin, Guanin zu Guanin, und nur das Thymin wird zu Uracil,abgekürzt U. Dieses Vorgehen der Natur und der Zellen muss man hinnehmen, ohne es erklären zu können.
    Also: Am Nachmittag des 22. Mai 1961, einem Montag, fügt Matthaei die künstlich hergestellte RNA, die nur aus U besteht und folglich im Laborjargon Poly-U heißt, dem ansonsten standardisierten Reaktionsgemisch hinzu - und plötzlich passiert die Sensation. In den Reagenzgläsern fällt etwas aus und dadurch auf. Mit dem Poly-U ist ein Polypeptid entstanden, aber welches? Matthaei braucht den Rest der Woche in Tag- und Nachtarbeit, um seine Identität zu ermitteln. Am Samstag, dem 27. Mai, ist er in den frühen Morgenstunden soweit. Das Polypeptid besteht - wie die eingesetzte RNA - aus einer Kette mit nur einem Glied, der Aminosäure Phenylalanin. Aus UUU oder von der DNA aus gesehen aus TTT wird Phe, wie Biochemiker die genannte Aminosäure abkürzen, und das erste Wort des genetischen Codes ist bekannt.
    Und nicht nur das. Mit Matthaeis Erfolg ist klar, wie man vorgehen muss: Alle möglichen synthetischen RNA-Moleküle mit allen möglichen Kombinationen herstellen, dem oben beschriebenen Reaktionsgemisch hinzufügen und das Protein analysieren. Matthaeis Chef, Leiter einer großen Labororganisation, findet in den frühen sechziger Jahren die anderen Zuordnungen und etabliert den genetischen Code so, wie er heute in den Schul- und Lehrbüchern steht.
REKOMBINATION
    Der Ausdruck Rekombination wurde ursprünglich in der Genetik benutzt. Mit ihm bezeichnete man das gemeinsame Auftreten von Eigenschaften in einer nachfolgenden Generation, die bei den Eltern noch getrennt (bei Vater und Mutter) waren. Bald wurde die Basis der Neukombinierung verstanden, da sie im Mikroskop sichtbar wurde. Chromosomen können in dem Vorgang, den man als Crossingover bezeichnet, ganze Abschnitte austauschen und auf diese Weise die dort befindlichen Gene rekombinieren. Da Chromosomen unter anderem aus durchgängigen DNA-Fäden bestehen, müssen Zellen über Werkzeuge verfügen, einen DNA-Doppelstrang durchzutrennen und wieder zusammenzufügen, wobei jeder einzelne Baustein eines Gens als Zielpunkt der Rekombination in Frage kommt. Diese Werkzeuge wurden als Proteine identifiziert, die als Enzyme, die DNA in der Mitte durchschneiden können, Endonukleasen genannt wurden und werden. In den siebziger Jahren zeigte sich, dass der Schnitt so erfolgen kann, dass ein Stück Einzelstrang am Ende frei bleibt, was natürlich nützlich für das erneute Verbinden ist. Allerdings muss man nicht die DNA-Fragmente verbinden, die man vorher zerstückelt hat. Man kann DNA-Abschnitte aus unterschiedlichen Quellen rekombinieren, etwa aus Bakterien- und Pflanzenzellen. Wer dies ausführt, betreibt Gentechnik, stellt also rekombinierte DNA - oder rekombinante DNA, wie es manchmal im Anklang an das englische recombinant DNA genannt wird - her. Rekombinierte DNA kann rekombinierte Proteine hervorbringen, und damit ist eine neue Möglichkeit der Biomedizin bezeichnet, bessere und wirksamere Medikamente herzustellen.
    Es ist übrigens die Gentechnik, die sowohl das öffentliche Interesse an den Genen als auch die wissenschaftlichen Möglichkeiten mit ihnen gesteigert hat. Die Rekombination ist das eigentlich spannende Element - in der Wissenschaft, in der Zelle und in der Evolution. Man muss sich dauernd austauschen und erneuern, um mithalten zu können. Die

Weitere Kostenlose Bücher