Beck Wissen - Materie - Von der Urmateria zum Leben
Zustände umschlagen kann, zeigt das folgende Beispiel der Strömungsdynamik. In einem Fluß hinter einem Hindernis (z.B. Brückenpfeiler) treten in Abhängigkeit von der Strömungsgeschwindigkeit Strömungsmuster auf. Zunächst besitzt der Fluß ein homogenes Strömungsbild hinter dem Hindernis. Es strebt einem homogenen Gleichgewichtszustand zu. Bei Erhöhung der Strömungsgeschwindigkeit kommt es zur Wirbelbildung. Physikalisch treten zunächst periodische Bifurkationsbildungen auf, dann quasi-periodische Wirbelbildungen, die schließlich in ein chaotisches und fraktales Wirbelbild übergehen. Entgegen der alltäglichen Auffassung kann Chaos daher auch als hochkomplexer Ordnungszustand der Materie aufgefaßt werden. {50}
3. Selbstorganisation und Chaos der Materie
Das thermodynamische Schema, mit dem die Entstehung stationärer Ordnungszustände der Materie fern des thermischen Gleichgewichts erklärt wird, lautet allgemein so: Bestimmte äußere Parameter wie Temperatur- oder Geschwindigkeitsdifferenzen werden geändert, bis der alte Zustand instabil wird und in einen neuen Zustand übergeht. Bei kritischen Werten entstehen spontan makroskopische Ordnungsstrukturen, die sich durch Kollektivbewegungen der mikroskopischen Systemteilchen durchgesetzt haben. Im Unterschied zu den Phasenübergängen im thermischen Gleichgewicht handelt es sich also um Bewegungsmuster, die durch Energiezufuhr von außen aufrechterhalten werden. Unter diesen Bedingungen organisiert die Materie ihre Ordnungszustände selber. Selbstorganisationsmodelle der Materie fernab des thermischen Gleichgewichts haben mittlerweile im Fall des Laserlichts enorme technische Bedeutung gewonnen. {51} Der Laser ist für Hermann Haken ein System zwischen belebter und unbelebter Materie, in dem sich das Prinzip der Synergetik realisiert, d.h. das spontane Auftreten von makroskopischen Ordnungszuständen offener Systeme, deren mikroskopische Elemente sich selbst in bestimmten Bewegungsmustern organisieren.
Auch in der anorganischen Chemie treten bei bestimmten kritischen Konzentrationen von Substanzen räumliche, zeitliche oder raum-zeitliche Muster auf. Bei der Zhabotinski-Reaktion handelt es sich um ein offenes System fern des thermischen Gleichgewichts, das bei bestimmten kritischen Konzentrationsmengen spontan bestimmte makroskopische Wellenmuster zeigt und damit die Symmetrie der zunächst homogenen Mischung bricht. Nach dem Superpositionsprinzip müßten sich die einzelnen Ringwellen ungestört durchdringen und überlagern. Tatsächlich pulsieren die einzelnen Ringwellenzentren aber in separierten Zonen und scheinen sich gegenseitig zu verdrängen. Die Einschränkung des Superpositionsprinzips bzw. die Nicht-Linearität komplexer Systemdynamik wird hier unmittelbar anschaulich.
Die Entstehung von Ordnung in der Materie ist also keineswegs unwahrscheinlich und zufällig, sondern findet unter bestimmten Nebenbedingungen gesetzmäßig statt. Man spricht von dissipativer Selbstorganisation der Materie fern des thermischen Gleichgewichts bei offenen (,dissipativen‘) Systemen, die in Stoff-und Energieaustausch mit ihrer Umwelt stehen. Es gibt aber auch konservative Selbstorganisation der Materie bei abgeschlossenen Systemen im oder nahe dem thermischen Gleichgewicht. Ein Beispiel liefert das Spin- Modell eines Ferromagneten, den man sich als komplexes System aus vielen kleinen Elementarmagneten (Dipolen) vorstellen kann. Bei hohen Temperaturen zeigen die Elementarmagneten in beliebiger Richtung. Dabei heben sich ihre magnetischen Momente auf. In diesem Sinn liegt ein homogenes Muster vor, in dem keine Richtung ausgezeichnet ist. Makroskopisch wird daher keine Magnetisierung beobachtet. Wird aber eine kritische Temperaturgrenze unterschritten, richten sich die Elementarmagneten in eine Richtung aus. Dieser Phasenübergang entspricht also einer echten Symmetriebrechung. Dadurch entsteht makroskopisch Magnetisierung.
Dieses Beispiel konservativer Selbstorganisation spielt heute in der Festkörperphysik bei der Untersuchung neuer Materialien eine große Rolle. So findet auch bei Supraleitern ein Phasenübergang statt, bei dem kollektive Wechselwirkungen auf der Mikroebene neue makroskopische Ordnungsmuster erzeugen. In verschiedenen Metallen und Legierungen verschwindet der elektrische Widerstand vollständig, wenn eine bestimmte Temperaturgrenze unterschritten wird. Als Erklärung auf der Mikroebene wird dazu auf kollektives Verhalten der
Weitere Kostenlose Bücher