Kosmologie für Fußgänger
Materie »entgegengesetzt« ist. Zu jedem Teilchen der gewöhnlichen Materie, etwa Elektron, Proton und Neutron, gibt es ein nahezu identisches Antiteilchen, nämlich Positron, Antiproton und Antineutron. Doch gab und gibt es keinerlei Anzeichen dafür, dass Antimaterie im Universum existiert, abgesehen von den winzigen Mengen, die man in Teilchenbeschleunigern künstlich herstellt und die in der Natur durch Kollision mit Materieteilchen entstehen. Zudem würde die Materie-Antimaterie-Zerstrahlung sehr starke Gammastrahlung erzeugen und nicht als Strahlung im Sichtbaren auftreten – also dort, wo ja Schmidt den Quasar entdeckt hatte.
Bleibt also nur noch die Gravitation. Ein Schwarzes Loch mit einer Masse von mehreren zehn Millionen Sonnenmassen akkretiert mindestens eine Sonnenmasse pro Jahr. Die entsprechende Leuchtkraft der Akkretionsscheibe würde die Leuchtkraft erklären, und die über hundert Millionen Jahre andauernde Akkretion von mehreren Sonnenmassen pro Jahr könnte zur heutigen riesigen Masse des Schwarzen Loches geführt haben.
Im Laufe der folgenden Jahrzehnte wurden viele neue Quasare in noch größeren Entfernungen als 3C273 entdeckt. Sie sind heute die am weitesten entfernten Objekte, die wir kennen. Auch die Galaxien, in denen die Quasare beheimatet sind, konnte man ausmachen und mit Teleskopen fotografieren. Quasare bilden nämlich die Zentren riesiger elliptischer Galaxien. Und noch etwas wurde entdeckt: Den Zentren vieler Quasare entspringen sehr stark gebündelte Gasstrahlen, die sich nahezu mit Lichtgeschwindigkeit bis zu mehreren Millionen Lichtjahre ins intergalaktische Medium hineinbohren. Diese Jets bestehen aus hochrelativistischen Elektronen und Magnetfeldern. Die Elektronen geben bei ihrer Bewegung um die magnetischen Feldlinien Synchrotronstrahlung ab, die im Radiobereich liegt. Der intergalaktische Raum, für optische Teleskope ein völlig schwarzes Terrain, ist für Radioteleskope ein überaus helles Gebiet. Dort prallen die Gasstrahlen aus den Quasaren auf das dünne intergalaktische Medium. Diese Zonen sind als riesige Radiokeulen auf den Karten der Radioastronomen sichtbar. In diesen Millionen Lichtjahre großen Keulen wird im Radiobereich noch einmal so viel Energie freigesetzt, wie der Kern selbst abstrahlt.
Wie entstehen solche Jets, und was haben sie mit Schwarzen Löchern zu tun? Die sehr stark gebündelten Gasstrahlen sind das Resultat der schnell rotierenden Akkretionsscheiben. Diese enthalten außer ionisiertem Gas auch Magnetfelder. Wir wissen schon aus der Schule, dass die Bewegung von elektrisch geladenen Teilchen relativ zu einem Magnetfeld einen Strom erzeugt. Ein Strom seinerseits erzeugt wiederum ein Magnetfeld, das sich um den Strom herumwindet. Die geladenen Teilchen strömen dann mit annähernd Lichtgeschwindigkeit entlang der Drehachse der Scheibe nach oben und unten ab, sie bilden den elektrischen Strom. Gebündelt wird der lichtschnelle Strom durch das von ihm selbst erzeugte Magnetfeld. Das Feld bündelt den relativistischen Gasstrahl so perfekt, dass er viele Millionen Lichtjahre als vergleichsweise schlanker Strahl ins intergalaktische Medium hinausströmen kann.
Solche Jets mit Strömungsgeschwindigkeiten von Beinahelichtgeschwindigkeit können aber nur durch sehr schnell drehende Scheiben produziert werden. Sehr schnell drehende Akkretionsscheiben gibt es ausschließlich um Schwarze Löcher, denn die Drehgeschwindigkeit einer Akkretionsscheibe hängt ab von der Masse des Objektes, um das sich die Scheiben bilden. Je größer die Masse des zentralen Objektes, desto schneller drehen sich die Gasmassen. Deshalb sind die Jets ein weiteres Indiz für die Existenz sehr massereicher Schwarzer Löcher in den Kernen von Galaxien.
Bleibt noch eine letzte Frage: Wie kommt es zu sehr massereichen Schwarzen Löchern? Die Entstehung von Schwarzen Löchern mit mehreren Millionen Sonnenmassen stellt man sich heute auf zweierlei Weisen vor. Die eine Theorie geht davon aus, dass Schwarze Löcher bei der Geburt der Galaxien automatisch in deren Zentrum entstehen. Das Gas kollabiert im Zentrum am schnellsten und kann dort über eine kurze Entwicklungsphase eines sehr dichten Sternhaufens ein Schwarzes Loch mit mehreren Millionen Sonnenmassen bilden.
Gemäß dem zweiten Modell geht die Entstehung eines supermassiven Schwarzen Loches in Stufen vonstatten. Bei der Bildung einer Galaxie entwickeln sich im Zentrum viele Millionen Sterne, also ein extrem dichter
Weitere Kostenlose Bücher