Bücher online kostenlos Kostenlos Online Lesen
Kosmologie für Fußgänger

Kosmologie für Fußgänger

Titel: Kosmologie für Fußgänger Kostenlos Bücher Online Lesen
Autoren: H Lesch
Vom Netzwerk:
Lichtjahre. Diese Entfernung bezeichnet man in der Astronomie auch als ein Parsec, abgekürzt pc.
    Mit dieser Festlegung lassen sich nun wiederum Parallaxen sehr einfach in Entfernungen umrechnen. Wie wir schon wissen, verdoppelt sich die Entfernung zum Stern, wenn der Parallaxenwinkel auf die Hälfte schrumpft. Künftig muss man also nur noch die Parallaxe in Bogensekunden messen und den Kehrwert davon bilden, um die Entfernung in Parsec zu erhalten. Sei zum Beispiel die Parallaxe gleich 0,05 Bogensekunden, dann ist 1:0,05 = 20, das heißt, unser Stern ist 20 Parsec entfernt.
    Die kleinsten Winkel, die man mit den heutigen Methoden von der Erde aus noch messen kann, liegen im Bereich von etwa 0,004 Bogensekunden. Das entspricht einer Entfernung von rund 800 Lichtjahren. Mithilfe des Astronomiesatelliten Hipparchos ist eine Reduzierung auf etwa 0,002 Bogensekunden möglich, sodass sich damit noch bis zu 1500 Lichtjahre entfernte Sterne vermessen lassen.
    Die meisten Sterne, die wir am Nachthimmel sehen, sind dutzende, hunderte, ja tausende von Lichtjahren entfernt. Sie bilden zusammen mit der Sonne die Milchstraße, deren Durchmesser mehr als 100 000 Lichtjahre beträgt. Heute kennen wir sogar die Entfernungen von einzelnen Sternen in anderen Galaxien, die Millionen von Lichtjahren entfernt sind – doch davon später.

Alternative Methoden der Entfernungsbestimmung von Planeten
    Für nahe Objekte wie die Planeten gibt es noch eine andere, sehr genaue Methode. Eigentlich ist sie ein »Abfallprodukt« aus dem Zweiten Weltkrieg. Damals wurde das Radar (radio detecting and ranging) erfunden. Mithilfe einer Richtantenne schickt man ein Radiosignal auf ein fernes Ziel und empfängt mit einer anderen Antenne das vom Ziel zurückgeworfene Echo. Radiowellen sind genau wie das sichtbare Licht elektromagnetische Wellen und breiten sich somit auch mit Lichtgeschwindigkeit aus. Man muss also nur die Zeit messen, die vergeht, bis das Radiosignal wieder zurückkommt, und diesen Wert mit der Lichtgeschwindigkeit multiplizieren, um die doppelte Entfernung zum angepeilten Objekt zu erhalten. 1946 gelang die erste Radarpeilung zum Mond, und 1958 konnte man das erste Radarecho von einem Planeten, der Venus, empfangen.
    Prinzipiell lässt sich das natürlich auch mit Licht durchführen, zum Beispiel mit einem Laser. Allerdings reflektieren die Planeten Licht relativ schlecht, sodass davon kaum mehr was zurückkommt. Man müsste schon Spiegel auf dem Planeten aufstellen. Genau das aber hat man bei den verschiedenen Besuchen auf dem Mond getan. Der Grund lag nicht so sehr in der Absicht, die Entfernung des Mondes zur Erde zu bestimmen, denn die war ja schon hinreichend genau bekannt. Vielmehr wollte man die Rate vermessen, mit der sich der Mond jährlich von der Erde entfernt. Auf diese Weise hat man herausgefunden, dass sich die Entfernung der Erde zum Mond um 3,8 Zentimeter pro Jahr vergrößert. 3,8 Zentimeter entsprechen rund einem Tausendmilliardstel der Mondentfernung. Aus diesen Werten kann man schon ersehen, wie genau das eben beschriebene Messverfahren ist.
    Was aber, wenn man nicht die Entfernung eines Planeten zur Erde, sondern seinen Abstand zur Sonne bestimmen will? In diesem Fall ist die Parallaxenmethode keine gute Wahl. Man kann sich ja schlecht auf einen Planeten setzen, um dort die tägliche Parallaxe der Sonne zu bestimmen. Das geht viel besser mithilfe des dritten Kepler’schen Gesetzes. Der Astronom Johannes Kepler hatte nämlich 1619 nach umfangreicher Rechenarbeit herausgefunden, dass sich die zur dritten Potenz erhobenen großen Halbachsen der Bahnellipsen der Planeten genauso verhalten wie die Quadrate ihrer Umlaufzeiten um die Sonne.
    Damit jetzt keine Verwirrung auftritt, müssen wir kurz erläutern, dass Kepler bereits zehn Jahre zuvor zu seiner eigenen Überraschung beweisen konnte, dass die Planeten die Sonne nicht, wie es noch Kopernikus annahm, auf Kreisbahnen, sondern auf elliptischen Bahnen umrunden, wobei die Halbachsen der Ellipsen gleichbedeutend sind mit den mittleren Abständen der Planeten zur Sonne. Bis zu dieser Entdeckung Keplers galt der Kreis als die perfekte Bahn eines Himmelskörpers. Wenn also Gott die Planeten um die Sonne angeordnet haben sollte, dann hätte er nach damaliger Auffassung natürlich die perfekte Kreisbahn gewählt. Keplers Ergebnisse waren also ein herber Schlag ins Gesicht der Theologen.
    Für die Entfernungsbestimmung der Planeten zur Sonne hatte man damit aber ein

Weitere Kostenlose Bücher