Silberband 009 - Das rote Universum
nicht gewußt hatte, wo er steckte: Ras Tschubai.
Ras Tschubai lag in einem Strukturkompensator gefangen. Rhodan widerrief die Startanweisung
und schaltete von seinem Pilotenpult aus die Kompensatoren ab.
Man hatte den Kompensator auseinandergenommen und den Afrikaner bewußtlos und mit
eigenartig verrenktem, offenbar gebrochenem Arm in der Resonatorkammer gefunden. Es war
offensichtlich, warum er sich aus seinem eigenartigen Gefängnis nicht mit Hilfe seiner
paramechanischen Gabe hatte befreien können: Die Restfelder mit ihrer fünfdimensionalen Struktur
hatten ihn daran gehindert.
Nach Ansicht der Ärzte hatte Ras Tschubai außerdem einen Nervenschock erlitten. Das war nicht
erstaunlich nach allem, was er durchgemacht hatte, aber es war bedauerlich, daß man ihn aus
diesem Grund nicht befragen konnte. Dr. Sköldson, Chef der Abteilung Medizin, weigerte sich, eine
Befragung vor Ablauf von vier Tagen zuzulassen.
»Der Mann braucht Ruhe und nochmals Ruhe«, behauptete Sköldson.
Perry Rhodan hatte sich damit abgefunden. Gucky bot zwar an, ebenfalls einen Versuch zu
riskieren, doch das lehnte Rhodan ab. Das mathematische Team wurde über den neuen Vorfall
informiert, und obwohl Rhodan zunächst angenommen hatte, Ras Tschubais merkwürdiges Abenteuer
hätte mit den Berechnungen gewiß nichts zu tun, zeigte ihm Atlans zunächst verblüfftes, dann
freudig aufleuchtendes Gesicht, daß der Mutant einen wichtigen Hinweis geliefert hatte.
»Das ist phantastisch im wahrsten Sinne des Wortes, Administrator!« rief er mit glänzenden
Augen. »Ein Mann im Strukturkompensator hilft der Mathematik auf die Beine!«
Perry Rhodan sah ihm ernst ins Gesicht.
»Ich wollte, du würdest mir endlich sagen, Admiral, auf welchen Beinen sie jetzt steht«,
beklagte er sich. »Habt ihr wenigstens etwas herausgefunden?«
Der Arkonide lächelte. »Gewiß, mein Freund. Aber ich möchte dir keine unnützen Hoffnungen
machen. Ich werde um halb zwölf bei dir sein und dir die ersten Ergebnisse unterbreiten. Du wirst
überrascht sein. Wir sind auf ein sehr merkwürdiges Phänomen gestoßen.«
Die Erweiterung des physikalischen Gesichtsfelds von der Dreidimensionalität zum
vierdimensionalen Raum-Zeit-Kontinuum hatte eine Revolution der Naturwissenschaften ausgelöst.
Die nächste Erweiterung, der Blick in den fünfdimensionalen Hyperraum, war der Menschheit infolge
eines glücklichen Zufalls, der Begegnung mit den Arkoniden, sozusagen geschenkt worden. Die
Entdeckung des Niemandslands zwischen den Dimensionen jedoch, die durch das Verschwinden von
Wanderer ausgelöst wurde, war eine Sensation allein deswegen, weil niemand je damit gerechnet
hatte, daß ein Halbraum, wie Atlan das Phänomen nannte, zwischen den Dimensionen existieren
konnte.
»Du bist Wissenschaftler genug, Administrator«, eröffnete Atlan seine Erklärung freundlich,
»um zu verstehen, daß ich keine anschaulichen Erklärungen liefern kann. Das Einstein-Kontinuum
ist ein unanschauliches Gebilde, der Hyperraum ist es noch in weitaus stärkerem Maß. Wie könnte
dann die Kreuzung zwischen beiden, der Halbraum, etwas anderes sein? Machen wir uns ein Modell.
Stellen wir uns den Hyperraum als ein Gebilde vor, das um ein fünfdimensionales Achsenkreuz
aufgespannt ist. Versetzen wir dieses Gebilde in Drehung und messen der einen Hälfte der
fünfdimensionalen Kugel, die als Rotationsfigur dabei entsteht, eine höchst merkwürdige
Eigenschaft bei: Sie verzerrt die Achsen, die sich jeweils in ihr befinden. Sie verkürzt sie, und
zwar ist das Maß der Verkürzung eine stetige Funktion der Rotationsgeschwindigkeit. Beim Eintritt
in die verzerrende Kugelhälfte hat die Achse noch ihre ursprüngliche Länge, dann beginnt sie sich
zu verkürzen. In dem Augenblick, in dem sie die Hälfte des Weges durch die verzerrende
Kugelhälfte zurückgelegt hat, ist die Achse völlig verschwunden. Danach beginnt sie wieder zu
wachsen, und in der Sekunde, in der sie aus der verzerrenden Halbkugel austritt, hat sie ihre
ursprüngliche Größe wiedererlangt. Da es sich um eine Halbkugel handelt und das Koordinatengerüst
des Hyperraums aus fünf Achsen besteht, sind an der Verzerrung in jedem Augenblick zwei oder drei
Achsen beteiligt, niemals mehr und niemals weniger. Das Wichtige ist nun, den Drehsinn des
Koordinatengerüsts festzulegen. Das ist eine Aufgabe, von der wir noch nicht wissen, wie wir mit
ihr fertig werden sollen. Bisher steht lediglich eines fest:
Weitere Kostenlose Bücher